Cargando…
Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion
A direct demonstration is given of interaction between specific neurons without impulses, via graded slow potentials electrotonically spread from one cell to another. Repetitive polarizing or depolarizing current pulses of 50 to 200 msec. and subthreshold intensity were passed through an intracellul...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1960
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195059/ https://www.ncbi.nlm.nih.gov/pubmed/13843050 |
_version_ | 1782147756834422784 |
---|---|
author | Watanabe, Akira Bullock, Theodore H. |
author_facet | Watanabe, Akira Bullock, Theodore H. |
author_sort | Watanabe, Akira |
collection | PubMed |
description | A direct demonstration is given of interaction between specific neurons without impulses, via graded slow potentials electrotonically spread from one cell to another. Repetitive polarizing or depolarizing current pulses of 50 to 200 msec. and subthreshold intensity were passed through an intracellular electrode in the soma of a follower cell of the isolated ganglion. When the frequency is near the natural rhythm of impulse bursts corresponding to heart beats and arising in a pacemaker cell 5 to 10 mm. posteriorly, the bursts rapidly become synchronized with the pulses. The effect disappears upon withdrawing the intracellular electrode. Brief pulses or full spikes in the follower are not effective. Hyperpolarizing long pulses attract the burst to a fixed period after the end of the pulse, depolarizations after the beginning of the pulse. The natural rhythm promptly reappears when the pulses are stopped and occasionally breaks through during weak repetitive pulses. Current pulses in postsynaptic cells also alter the threshold of a presynaptic neuron to externally applied stimuli. Some kind of direct, low resistance pathway for electrotonic spread, discriminating against spikes because of their brevity, is inferred, providing a basis for subthreshold interaction which is specific and not by way of a field effect. Due to the sensitivity of modulation of ongoing rhythms, electrotonic currents can be effective even after decrementing over several millimeters. |
format | Text |
id | pubmed-2195059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1960 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21950592008-04-23 Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion Watanabe, Akira Bullock, Theodore H. J Gen Physiol Article A direct demonstration is given of interaction between specific neurons without impulses, via graded slow potentials electrotonically spread from one cell to another. Repetitive polarizing or depolarizing current pulses of 50 to 200 msec. and subthreshold intensity were passed through an intracellular electrode in the soma of a follower cell of the isolated ganglion. When the frequency is near the natural rhythm of impulse bursts corresponding to heart beats and arising in a pacemaker cell 5 to 10 mm. posteriorly, the bursts rapidly become synchronized with the pulses. The effect disappears upon withdrawing the intracellular electrode. Brief pulses or full spikes in the follower are not effective. Hyperpolarizing long pulses attract the burst to a fixed period after the end of the pulse, depolarizations after the beginning of the pulse. The natural rhythm promptly reappears when the pulses are stopped and occasionally breaks through during weak repetitive pulses. Current pulses in postsynaptic cells also alter the threshold of a presynaptic neuron to externally applied stimuli. Some kind of direct, low resistance pathway for electrotonic spread, discriminating against spikes because of their brevity, is inferred, providing a basis for subthreshold interaction which is specific and not by way of a field effect. Due to the sensitivity of modulation of ongoing rhythms, electrotonic currents can be effective even after decrementing over several millimeters. The Rockefeller University Press 1960-07-01 /pmc/articles/PMC2195059/ /pubmed/13843050 Text en Copyright © Copyright, 1960, by The Rockefeller Institute This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Watanabe, Akira Bullock, Theodore H. Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion |
title | Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion |
title_full | Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion |
title_fullStr | Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion |
title_full_unstemmed | Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion |
title_short | Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion |
title_sort | modulation of activity of one neuron by subthreshold slow potentials in another in lobster cardiac ganglion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195059/ https://www.ncbi.nlm.nih.gov/pubmed/13843050 |
work_keys_str_mv | AT watanabeakira modulationofactivityofoneneuronbysubthresholdslowpotentialsinanotherinlobstercardiacganglion AT bullocktheodoreh modulationofactivityofoneneuronbysubthresholdslowpotentialsinanotherinlobstercardiacganglion |