Cargando…
Electrolyte Metabolism in HeLa Cells
Methods have been developed to study cellular Na, K, and Cl concentrations in HeLa cells. Cell [Na] and [K] are functions of the age of the culture. As the culture grows [K], expressed in mmols/liter cell H(2)O, rises from an initial value of 121 to a peak of 206 at about 4 days, and thereafter fall...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1963
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195320/ https://www.ncbi.nlm.nih.gov/pubmed/14043004 |
Sumario: | Methods have been developed to study cellular Na, K, and Cl concentrations in HeLa cells. Cell [Na] and [K] are functions of the age of the culture. As the culture grows [K], expressed in mmols/liter cell H(2)O, rises from an initial value of 121 to a peak of 206 at about 4 days, and thereafter falls until it has almost returned to the initial value by the 9th day. [Na] falls as [K] rises, but there is no fixed relationship between the cellular concentrations of the two cations. There is, however, a correlation between generation time and cellular [K]. Measurements of net K uptake and net Na extrusion were carried out during 1 hour incubation at 37°C of low K cells. Both net K uptake and net Na extrusion took place against chemical concentration gradients, so that at least one transport system must be active; if the Cl distribution is passive both net K uptake and net Na extrusion are active. Studies with inhibitors of respiration and glycolysis lead to the conclusion that respiration is not required for these net transports, which appear to derive their energy from glycolytic sources. |
---|