Cargando…
B Cell Development Is Arrested at the Immature B Cell Stage in Mice Carrying a Mutation in the Cytoplasmic Domain of Immunoglobulin β
The B cell receptor (BCR) regulates B cell development and function through immunoglobulin (Ig)α and Igβ, a pair of membrane-bound Ig superfamily proteins, each of which contains a single cytoplasmic immunoreceptor tyrosine activation motif (ITAM). To determine the function of Igβ, we produced mice...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195879/ https://www.ncbi.nlm.nih.gov/pubmed/11136817 |
Sumario: | The B cell receptor (BCR) regulates B cell development and function through immunoglobulin (Ig)α and Igβ, a pair of membrane-bound Ig superfamily proteins, each of which contains a single cytoplasmic immunoreceptor tyrosine activation motif (ITAM). To determine the function of Igβ, we produced mice that carry a deletion of the cytoplasmic domain of Igβ (IgβΔC mice) and compared them to mice that carry a similar mutation in Igα (MB1ΔC, herein referred to as IgαΔC mice). IgβΔC mice differ from IgαΔC mice in that they show little impairment in early B cell development and they produce immature B cells that respond normally to BCR cross-linking as determined by Ca(2+) flux. However, IgβΔC B cells are arrested at the immature stage of B cell development in the bone marrow and die by apoptosis. We conclude that the cytoplasmic domain Igβ is required for B cell development beyond the immature B cell stage and that Igα and Igβ have distinct biologic activities in vivo. |
---|