Cargando…

Dominant-Interfering Hsc70 Mutants Disrupt Multiple Stages of the Clathrin-Coated Vesicle Cycle in Vivo

Within the clathrin-coated vesicle (CCV) cycle, coat assembly drives the internalization of receptors from the cell surface and disassembly allows for the processing of internalized ligands. The heat shock cognate protein, hsc70, has been implicated in regulating coat disassembly. We find that in ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Newmyer, Sherri L., Schmid, Sandra L.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196005/
https://www.ncbi.nlm.nih.gov/pubmed/11157986
_version_ 1782147974358368256
author Newmyer, Sherri L.
Schmid, Sandra L.
author_facet Newmyer, Sherri L.
Schmid, Sandra L.
author_sort Newmyer, Sherri L.
collection PubMed
description Within the clathrin-coated vesicle (CCV) cycle, coat assembly drives the internalization of receptors from the cell surface and disassembly allows for the processing of internalized ligands. The heat shock cognate protein, hsc70, has been implicated in regulating coat disassembly. We find that in cells overexpressing ATPase-deficient hsc70 mutants, uncoating of CCVs is inhibited in vivo, and the majority of unassembled cytosolic clathrin shifts to an assembled pool that cofractionates with AP1 and AP2. Surprisingly, this assembled pool of coat proteins accumulates in the absence of cargo receptors, suggesting that disruption of hsc70 activity may cause misassembly of empty clathrin cages. The strongest effect of overexpression of hsc70 mutants is a block in transferrin receptor (TfnR) recycling, which cannot be accounted for by the degree of inhibition of uncoating of endocytic CCVs. These results suggest that hsc70 participates in multiple transport and/or sorting events between endosomal compartments. Additionally, the mutant-expressing cells are defective at internalizing transferrin. In the most potent case, the initial rate of uptake is inhibited 10-fold, and TfnR levels double at the cell surface. Our findings demonstrate that hsc70 indeed regulates coat disassembly and also suggest that this chaperone broadly modulates clathrin dynamics throughout the CCV cycle.
format Text
id pubmed-2196005
institution National Center for Biotechnology Information
language English
publishDate 2001
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21960052008-05-01 Dominant-Interfering Hsc70 Mutants Disrupt Multiple Stages of the Clathrin-Coated Vesicle Cycle in Vivo Newmyer, Sherri L. Schmid, Sandra L. J Cell Biol Original Article Within the clathrin-coated vesicle (CCV) cycle, coat assembly drives the internalization of receptors from the cell surface and disassembly allows for the processing of internalized ligands. The heat shock cognate protein, hsc70, has been implicated in regulating coat disassembly. We find that in cells overexpressing ATPase-deficient hsc70 mutants, uncoating of CCVs is inhibited in vivo, and the majority of unassembled cytosolic clathrin shifts to an assembled pool that cofractionates with AP1 and AP2. Surprisingly, this assembled pool of coat proteins accumulates in the absence of cargo receptors, suggesting that disruption of hsc70 activity may cause misassembly of empty clathrin cages. The strongest effect of overexpression of hsc70 mutants is a block in transferrin receptor (TfnR) recycling, which cannot be accounted for by the degree of inhibition of uncoating of endocytic CCVs. These results suggest that hsc70 participates in multiple transport and/or sorting events between endosomal compartments. Additionally, the mutant-expressing cells are defective at internalizing transferrin. In the most potent case, the initial rate of uptake is inhibited 10-fold, and TfnR levels double at the cell surface. Our findings demonstrate that hsc70 indeed regulates coat disassembly and also suggest that this chaperone broadly modulates clathrin dynamics throughout the CCV cycle. The Rockefeller University Press 2001-02-05 /pmc/articles/PMC2196005/ /pubmed/11157986 Text en © 2001 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Original Article
Newmyer, Sherri L.
Schmid, Sandra L.
Dominant-Interfering Hsc70 Mutants Disrupt Multiple Stages of the Clathrin-Coated Vesicle Cycle in Vivo
title Dominant-Interfering Hsc70 Mutants Disrupt Multiple Stages of the Clathrin-Coated Vesicle Cycle in Vivo
title_full Dominant-Interfering Hsc70 Mutants Disrupt Multiple Stages of the Clathrin-Coated Vesicle Cycle in Vivo
title_fullStr Dominant-Interfering Hsc70 Mutants Disrupt Multiple Stages of the Clathrin-Coated Vesicle Cycle in Vivo
title_full_unstemmed Dominant-Interfering Hsc70 Mutants Disrupt Multiple Stages of the Clathrin-Coated Vesicle Cycle in Vivo
title_short Dominant-Interfering Hsc70 Mutants Disrupt Multiple Stages of the Clathrin-Coated Vesicle Cycle in Vivo
title_sort dominant-interfering hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196005/
https://www.ncbi.nlm.nih.gov/pubmed/11157986
work_keys_str_mv AT newmyersherril dominantinterferinghsc70mutantsdisruptmultiplestagesoftheclathrincoatedvesiclecycleinvivo
AT schmidsandral dominantinterferinghsc70mutantsdisruptmultiplestagesoftheclathrincoatedvesiclecycleinvivo