Cargando…

Critical Role of the Programmed Death-1 (PD-1) Pathway in Regulation of Experimental Autoimmune Encephalomyelitis

Experimental autoimmune encephalomyelitis (EAE) is mediated by autoantigen-specific T cells dependent on critical costimulatory signals for their full activation and regulation. We report that the programmed death-1 (PD-1) costimulatory pathway plays a critical role in regulating peripheral toleranc...

Descripción completa

Detalles Bibliográficos
Autores principales: Salama, Alan D., Chitnis, Tanuja, Imitola, Jaime, Ansari, Mohammed Javeed I., Akiba, Hisaya, Tushima, Fumihiko, Azuma, Miyuki, Yagita, Hideo, Sayegh, Mohamed H., Khoury, Samia J.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196082/
https://www.ncbi.nlm.nih.gov/pubmed/12847138
http://dx.doi.org/10.1084/jem.20022119
Descripción
Sumario:Experimental autoimmune encephalomyelitis (EAE) is mediated by autoantigen-specific T cells dependent on critical costimulatory signals for their full activation and regulation. We report that the programmed death-1 (PD-1) costimulatory pathway plays a critical role in regulating peripheral tolerance in murine EAE and appears to be a major contributor to the resistance of disease induction in CD28-deficient mice. After immunization with myelin oligodendrocyte glycoprotein (MOG) there was a progressive increase in expression of PD-1 and its ligand PD-L1 but not PD-L2 within the central nervous system (CNS) of mice with EAE, peaking after 3 wk. In both wild-type (WT) and CD28-deficient mice, PD-1 blockade resulted in accelerated and more severe disease with increased CNS lymphocyte infiltration. Worsening of disease after PD-1 blockade was associated with a heightened autoimmune response to MOG, manifested by increased frequency of interferon γ–producing T cells, increased delayed-type hypersensitivity responses, and higher serum levels of anti-MOG antibody. In vivo blockade of PD-1 resulted in increased antigen-specific T cell expansion, activation, and cytokine production. Interestingly, PD-L2 but not PD-L1 blockade in WT animals also resulted in disease augmentation. Our data are the first demonstration that the PD-1 pathway plays a critical role in regulating EAE.