Cargando…
Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain
Leishmania are parasitic protozoa with two major stages in their life cycle: flagellated promastigotes that live in the gut of the insect vector and nonflagellated amastigotes that live inside the lysosomes of the vertebrate host macrophages. The Pro-1 glucose transporter of L. enriettii exists as t...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199890/ https://www.ncbi.nlm.nih.gov/pubmed/7532172 |
_version_ | 1782148213190426624 |
---|---|
collection | PubMed |
description | Leishmania are parasitic protozoa with two major stages in their life cycle: flagellated promastigotes that live in the gut of the insect vector and nonflagellated amastigotes that live inside the lysosomes of the vertebrate host macrophages. The Pro-1 glucose transporter of L. enriettii exists as two isoforms, iso-1 and iso-2, which are both expressed primarily in the promastigote stage of the life cycle. These two isoforms constitute modular structures: they differ exclusively and extensively in their NH2-terminal hydrophilic domains, but the remainder of each isoform sequence is identical to that of the other. We have localized these glucose transporters within promastigotes by two approaches. In the first method, we have raised a polyclonal antibody against the COOH-terminal hydrophilic domain shared by both iso-1 and iso-2, and we have used this antibody to detect the transporters by confocal immunofluorescence microscopy and immunoelectron microscopy. The staining observed with this antibody occurs primarily on the plasma membrane and the membrane of the flagellar pocket, but there is also light staining on the flagellum. We have also localized each isoform separately by introducing an epitope tag into each protein sequence. These experiments demonstrate that iso- 1, the minor isoform, resides primarily on the flagellar membrane, while iso-2, the major isoform, is located on the plasma membrane and the flagellar pocket. Hence, each isoform is differentially sorted, and the structural information for targeting each transporter isoform to its correct membrane address resides within the NH2-terminal hydrophilic domain. |
format | Text |
id | pubmed-2199890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21998902008-05-01 Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain J Cell Biol Articles Leishmania are parasitic protozoa with two major stages in their life cycle: flagellated promastigotes that live in the gut of the insect vector and nonflagellated amastigotes that live inside the lysosomes of the vertebrate host macrophages. The Pro-1 glucose transporter of L. enriettii exists as two isoforms, iso-1 and iso-2, which are both expressed primarily in the promastigote stage of the life cycle. These two isoforms constitute modular structures: they differ exclusively and extensively in their NH2-terminal hydrophilic domains, but the remainder of each isoform sequence is identical to that of the other. We have localized these glucose transporters within promastigotes by two approaches. In the first method, we have raised a polyclonal antibody against the COOH-terminal hydrophilic domain shared by both iso-1 and iso-2, and we have used this antibody to detect the transporters by confocal immunofluorescence microscopy and immunoelectron microscopy. The staining observed with this antibody occurs primarily on the plasma membrane and the membrane of the flagellar pocket, but there is also light staining on the flagellum. We have also localized each isoform separately by introducing an epitope tag into each protein sequence. These experiments demonstrate that iso- 1, the minor isoform, resides primarily on the flagellar membrane, while iso-2, the major isoform, is located on the plasma membrane and the flagellar pocket. Hence, each isoform is differentially sorted, and the structural information for targeting each transporter isoform to its correct membrane address resides within the NH2-terminal hydrophilic domain. The Rockefeller University Press 1995-02-02 /pmc/articles/PMC2199890/ /pubmed/7532172 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain |
title | Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain |
title_full | Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain |
title_fullStr | Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain |
title_full_unstemmed | Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain |
title_short | Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain |
title_sort | differential targeting of two glucose transporters from leishmania enriettii is mediated by an nh2-terminal domain |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199890/ https://www.ncbi.nlm.nih.gov/pubmed/7532172 |