Cargando…

Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells

Gap junctions contain membrane channels that mediate the cell-to-cell movement of ions, metabolites and cell signaling molecules. As gap junctions are comprised of a hexameric array of connexin polypeptides, the expression of a mutant connexin polypeptide may exert a dominant negative effect on gap...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199931/
https://www.ncbi.nlm.nih.gov/pubmed/7542247
_version_ 1782148222802722816
collection PubMed
description Gap junctions contain membrane channels that mediate the cell-to-cell movement of ions, metabolites and cell signaling molecules. As gap junctions are comprised of a hexameric array of connexin polypeptides, the expression of a mutant connexin polypeptide may exert a dominant negative effect on gap junctional communication. To examine this possibility, we constructed a connexin 43 (Cx43)/beta-galactosidase (beta-gal) expression vector in which the bacterial beta-gal protein is fused in frame to the carboxy terminus of Cx43. This vector was transfected into NIH3T3 cells, a cell line which is well coupled via gap junctions and expresses high levels of Cx43. Transfectant clones were shown to express the fusion protein by northern and western analysis. X-Gal staining further revealed that all of the fusion protein containing cells also expressed beta-gal enzymatic activity. Double immunostaining with a beta-gal and Cx43 antibody demonstrated that the fusion protein is immunolocalized to the perinuclear region of the cytoplasm and also as punctate spots at regions of cell-cell contact. This pattern is similar to that of Cx43 in the parental 3T3 cells, except that in the fusion protein expressing cells, Cx43 expression was reduced at regions of cell-cell contact. Examination of gap junctional communication (GJC) with dye injection studies further showed that dye coupling was inhibited in the fusion protein expressing cells, with the largest reduction in coupling found in a clone exhibiting little Cx43 localization at regions of cell-cell contact. When the fusion protein expression vector was transfected into the communication poor C6 cell line, abundant fusion protein expression was observed, but unlike the transfected NIH3T3 cells, no fusion protein was detected at the cell surface. Nevertheless, dye coupling was inhibited in these C6 cells. Based on these observations, we propose that the fusion protein may inhibit GJC by sequestering the Cx43 protein intracellularly. Overall, these results demonstrate that the Cx43/beta-gal fusion protein can exert a dominant negative effect on GJC in two different cell types, and suggests that it may serve as a useful approach for probing the biological function of gap junctions.
format Text
id pubmed-2199931
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21999312008-05-01 Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells J Cell Biol Articles Gap junctions contain membrane channels that mediate the cell-to-cell movement of ions, metabolites and cell signaling molecules. As gap junctions are comprised of a hexameric array of connexin polypeptides, the expression of a mutant connexin polypeptide may exert a dominant negative effect on gap junctional communication. To examine this possibility, we constructed a connexin 43 (Cx43)/beta-galactosidase (beta-gal) expression vector in which the bacterial beta-gal protein is fused in frame to the carboxy terminus of Cx43. This vector was transfected into NIH3T3 cells, a cell line which is well coupled via gap junctions and expresses high levels of Cx43. Transfectant clones were shown to express the fusion protein by northern and western analysis. X-Gal staining further revealed that all of the fusion protein containing cells also expressed beta-gal enzymatic activity. Double immunostaining with a beta-gal and Cx43 antibody demonstrated that the fusion protein is immunolocalized to the perinuclear region of the cytoplasm and also as punctate spots at regions of cell-cell contact. This pattern is similar to that of Cx43 in the parental 3T3 cells, except that in the fusion protein expressing cells, Cx43 expression was reduced at regions of cell-cell contact. Examination of gap junctional communication (GJC) with dye injection studies further showed that dye coupling was inhibited in the fusion protein expressing cells, with the largest reduction in coupling found in a clone exhibiting little Cx43 localization at regions of cell-cell contact. When the fusion protein expression vector was transfected into the communication poor C6 cell line, abundant fusion protein expression was observed, but unlike the transfected NIH3T3 cells, no fusion protein was detected at the cell surface. Nevertheless, dye coupling was inhibited in these C6 cells. Based on these observations, we propose that the fusion protein may inhibit GJC by sequestering the Cx43 protein intracellularly. Overall, these results demonstrate that the Cx43/beta-gal fusion protein can exert a dominant negative effect on GJC in two different cell types, and suggests that it may serve as a useful approach for probing the biological function of gap junctions. The Rockefeller University Press 1995-07-02 /pmc/articles/PMC2199931/ /pubmed/7542247 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells
title Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells
title_full Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells
title_fullStr Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells
title_full_unstemmed Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells
title_short Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells
title_sort expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in nih3t3 cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199931/
https://www.ncbi.nlm.nih.gov/pubmed/7542247