Cargando…

Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R

The extracellular matrix glycoprotein tenascin-R (TN-R) is a multidomain protein implicated in neural cell adhesion. To analyze the structure-function relationship of the different domains of TN-R, several recombinant TN-R fragments were expressed in bacterial cells. Two distinct binding regions wer...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199939/
https://www.ncbi.nlm.nih.gov/pubmed/7615642
_version_ 1782148224697499648
collection PubMed
description The extracellular matrix glycoprotein tenascin-R (TN-R) is a multidomain protein implicated in neural cell adhesion. To analyze the structure-function relationship of the different domains of TN-R, several recombinant TN-R fragments were expressed in bacterial cells. Two distinct binding regions were localized on the TN-R polypeptide: a region binding the axon-associated immunoglobulin (Ig)-like F11 protein and a cell attachment site. The binding region of the glycosylphosphatidylinositol (GPI)-anchored F11 was allocated to the second and third fibronectin type III (FNIII)-like domain within TN-R. By using a mutant polypeptide of F11 containing only Ig-like domains, a direct interaction between the Ig-like domains of F11 and FNIII-like domains 2-3 of TN-R was demonstrated. The interaction of TN-R with F11 in in vitro cultures enhanced F11-mediated neurite outgrowth, suggesting that the combined action of F11 and TN-R might be of regulatory influence on axon extension. A cell attachment region was identified in the FNIII-like domain eight of TN-R by domain-specific antibodies and fusion constructs. This site is distinct from the F11 binding site within TN-R.
format Text
id pubmed-2199939
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21999392008-05-01 Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R J Cell Biol Articles The extracellular matrix glycoprotein tenascin-R (TN-R) is a multidomain protein implicated in neural cell adhesion. To analyze the structure-function relationship of the different domains of TN-R, several recombinant TN-R fragments were expressed in bacterial cells. Two distinct binding regions were localized on the TN-R polypeptide: a region binding the axon-associated immunoglobulin (Ig)-like F11 protein and a cell attachment site. The binding region of the glycosylphosphatidylinositol (GPI)-anchored F11 was allocated to the second and third fibronectin type III (FNIII)-like domain within TN-R. By using a mutant polypeptide of F11 containing only Ig-like domains, a direct interaction between the Ig-like domains of F11 and FNIII-like domains 2-3 of TN-R was demonstrated. The interaction of TN-R with F11 in in vitro cultures enhanced F11-mediated neurite outgrowth, suggesting that the combined action of F11 and TN-R might be of regulatory influence on axon extension. A cell attachment region was identified in the FNIII-like domain eight of TN-R by domain-specific antibodies and fusion constructs. This site is distinct from the F11 binding site within TN-R. The Rockefeller University Press 1995-07-02 /pmc/articles/PMC2199939/ /pubmed/7615642 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R
title Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R
title_full Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R
title_fullStr Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R
title_full_unstemmed Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R
title_short Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R
title_sort characterization of functional domains of the tenascin-r (restrictin) polypeptide: cell attachment site, binding with f11, and enhancement of f11-mediated neurite outgrowth by tenascin-r
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199939/
https://www.ncbi.nlm.nih.gov/pubmed/7615642