Cargando…
Large and small splice variants of collagen XII: differential expression and ligand binding
Collagen XII has a short collagenous tail and a very large, three-armed NC3 domains consisting primarily of fibronectin type III repeats. Differential splicing within this domain gives rise to a large (320 kD) and a small (220 kD) subunit; the large but not the small can carry glycosaminoglycan. To...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199960/ https://www.ncbi.nlm.nih.gov/pubmed/7642694 |
_version_ | 1782148229643632640 |
---|---|
collection | PubMed |
description | Collagen XII has a short collagenous tail and a very large, three-armed NC3 domains consisting primarily of fibronectin type III repeats. Differential splicing within this domain gives rise to a large (320 kD) and a small (220 kD) subunit; the large but not the small can carry glycosaminoglycan. To investigate whether collagen XII variants have distinct expression patterns and functions, we generated antibody and cDNA probes specific for the alternatively spliced domain. We report here that the large variant has a more restricted expression in embryonic tissue than the small. For example, whereas the small variant is widespread in the dermis, the large is limited to the base of feather buds. Distinct proportions of mRNA for the two variants were detected depending on the tissue. Monoclonal antibodies allowed us to separate collagen XII variants, and to show that homo- and heterotrimers exist. Collagen XII variants differ in ligand binding. Small subunits interact weakly with heparin via their COOH-terminal domain. Large subunits have additional, stronger heparin-binding site(s) in their NH2-terminal extra domain. In vivo, both large and small collagen XII are associated with interstitial collagen. Here we show biochemically and ultrastructurally that collagen XII can be incorporated into collagen I fibrils when it is present during, but not after, fibril formation. Removal of the collagenous domain of collagen XII reduces its coprecipitation with collagen I. Our results indicate that collagen XII is specifically associated with fibrillar collagen, and that the large variant has binding sites for extracellular ligands not present in the small variant. |
format | Text |
id | pubmed-2199960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21999602008-05-01 Large and small splice variants of collagen XII: differential expression and ligand binding J Cell Biol Articles Collagen XII has a short collagenous tail and a very large, three-armed NC3 domains consisting primarily of fibronectin type III repeats. Differential splicing within this domain gives rise to a large (320 kD) and a small (220 kD) subunit; the large but not the small can carry glycosaminoglycan. To investigate whether collagen XII variants have distinct expression patterns and functions, we generated antibody and cDNA probes specific for the alternatively spliced domain. We report here that the large variant has a more restricted expression in embryonic tissue than the small. For example, whereas the small variant is widespread in the dermis, the large is limited to the base of feather buds. Distinct proportions of mRNA for the two variants were detected depending on the tissue. Monoclonal antibodies allowed us to separate collagen XII variants, and to show that homo- and heterotrimers exist. Collagen XII variants differ in ligand binding. Small subunits interact weakly with heparin via their COOH-terminal domain. Large subunits have additional, stronger heparin-binding site(s) in their NH2-terminal extra domain. In vivo, both large and small collagen XII are associated with interstitial collagen. Here we show biochemically and ultrastructurally that collagen XII can be incorporated into collagen I fibrils when it is present during, but not after, fibril formation. Removal of the collagenous domain of collagen XII reduces its coprecipitation with collagen I. Our results indicate that collagen XII is specifically associated with fibrillar collagen, and that the large variant has binding sites for extracellular ligands not present in the small variant. The Rockefeller University Press 1995-08-02 /pmc/articles/PMC2199960/ /pubmed/7642694 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Large and small splice variants of collagen XII: differential expression and ligand binding |
title | Large and small splice variants of collagen XII: differential expression and ligand binding |
title_full | Large and small splice variants of collagen XII: differential expression and ligand binding |
title_fullStr | Large and small splice variants of collagen XII: differential expression and ligand binding |
title_full_unstemmed | Large and small splice variants of collagen XII: differential expression and ligand binding |
title_short | Large and small splice variants of collagen XII: differential expression and ligand binding |
title_sort | large and small splice variants of collagen xii: differential expression and ligand binding |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199960/ https://www.ncbi.nlm.nih.gov/pubmed/7642694 |