Cargando…
A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae
Partitioning of the vacuole during cell division in Saccharomyces cerevisiae begins during early S phase and ends in late G2 phase before the yeast nucleus migrates into the bud neck. We have isolated and characterized a new mutant, vac5-1, which is defective in vacuole segregation. Cells with the v...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199970/ https://www.ncbi.nlm.nih.gov/pubmed/7642701 |
Sumario: | Partitioning of the vacuole during cell division in Saccharomyces cerevisiae begins during early S phase and ends in late G2 phase before the yeast nucleus migrates into the bud neck. We have isolated and characterized a new mutant, vac5-1, which is defective in vacuole segregation. Cells with the vac5-1 mutation can form large buds without vacuoles. The VAC5 gene was cloned and is identical to PHO80. PHO80 encodes a cyclin which acts in a complex with a cdc-like kinase, PHO85, as a negative regulator of two transcription factors (PHO2 and PHO4) that govern the expression of metabolic phosphatases. The vacuole inheritance defect in vac5-1 cells is dependent on the presence of the Pho85 kinase and its targets Pho4p and Pho2p. As with other alleles of PHO80, phosphatase levels are elevated in vac5-1 mutants. A suppressor, the COOH-terminal half of the Gal11 transcription factor, rescues the vac5-1 phenotype of defective vacuole inheritance without altering the vac5-1 phenotype of elevated phosphatase levels. In addition, neither maximal nor minimal levels of expression of the inducible "PHO" system phosphatases causes a vacuole inheritance defect. Though vac5-1 is recessive, pho80 delta or pho85 delta strains do not show a defect in vacuole inheritance, suggesting that vac5-1 is not a complete loss-of- function allele. Sequence analysis shows that the vac5-1 allele encodes a truncated form of the Pho80 cyclin and overexpression of vac5-1 in pho80 delta cells causes a vacuole inheritance defect. We conclude that the vac5-1 allele directs the Pho85 kinase to regulate, via transcription factors Pho4 and Pho2, genes that affect vacuole inheritance but which are not known to be under normal PHO pathway control. |
---|