Cargando…
A transferrin-like GPI-linked iron-binding protein in detergent- insoluble noncaveolar microdomains at the apical surface of fetal intestinal epithelial cells
A GPI-anchored 80-kD protein was found to be the major component of detergent-insoluble complexes, prepared from fetal porcine small intestine, constituting about 25% of the total amount of protein. An antibody was raised to the 80-kD protein, and by immunogold electron microscopy of ultracryosectio...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199996/ https://www.ncbi.nlm.nih.gov/pubmed/7490295 |
Sumario: | A GPI-anchored 80-kD protein was found to be the major component of detergent-insoluble complexes, prepared from fetal porcine small intestine, constituting about 25% of the total amount of protein. An antibody was raised to the 80-kD protein, and by immunogold electron microscopy of ultracryosections of mucosal tissue, the protein was localized to the apical surface of the enterocytes, whereas it was absent from the basolateral plasma membrane. Interestingly, it was mainly found in patches of flat or invaginated apical membrane domains rather than at the surface of microvilli. Caveolae were not found in association with these labeled microdomains. In addition, the 80-kD protein was seen in apical endocytic vacuoles and in tubulo-vesicular structures, suggesting that the apical microdomains are involved in endocytosis of the 80-kD protein. By its NH2-terminal amino acid sequence, iron-binding capacity and partial immunological cross- reactivity with serum transferrin, the 80-kD protein was shown to belong to the transferrin family, and it is probably homologous to melanotransferrin, a human melanoma-associated antigen. The 80-kD iron- binding protein was fully detergent-soluble immediately after synthesis and only became insoluble after gaining resistance to endo H, supporting a mechanism for exocytic delivery to the apical cell surface by way of detergent-insoluble glycolipid "rafts" that fuse with the plasmalemma at restricted sites devoid of microvilli. |
---|