Cargando…

Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions

In addition to its traditional location within the Golgi complex, beta 1,4-galactosyltransferase (GalTase) is also present on the cell surface, where it is thought to function as a cell adhesion molecule by binding to extracellular oligosaccharide ligands. Recent studies suggest that cells contain t...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200081/
https://www.ncbi.nlm.nih.gov/pubmed/8432725
_version_ 1782148258032779264
collection PubMed
description In addition to its traditional location within the Golgi complex, beta 1,4-galactosyltransferase (GalTase) is also present on the cell surface, where it is thought to function as a cell adhesion molecule by binding to extracellular oligosaccharide ligands. Recent studies suggest that cells contain two forms of GalTase with distinct cytoplasmic domains. The longer form of GalTase contains a 13-amino acid cytoplasmic extension and is preferentially targeted to the plasma membrane, relative to the shorter GalTase protein that is confined primarily to the Golgi compartment. In this study, we created a dominant negative mutation that interferes with the function of cell surface GalTase by transfecting into cells cDNAs encoding truncated versions of the long form of GalTase containing the complete cytoplasmic and transmembrane domains, but devoid of the catalytic domain. In both F9 embryonal carcinoma cells and Swiss 3T3 fibroblasts, overexpressing the truncated long GalTase (TLGT) protein displaced the endogenous cell surface GalTase from its association with the cytoskeleton, resulting in a loss of intercellular adhesion and cell spreading specifically on matrices that use GalTase as a cell surface receptor. In contrast, overexpressing the analogous truncated short GalTase (TSGT) protein did not affect cell morphology or GalTase activity. In control assays, inducing the TLGT protein had no effect on cell interactions with fibronectin (which is independent of GalTase), or on the cytoskeleton attachment of another matrix receptor (beta 1 integrin), or on overall glycoprotein synthesis, thus eliminating nonspecific effects of the TLGT protein on cellular adhesion and metabolism. These results represent the first molecular manipulation of cell surface GalTase expression and confirm its function as a cell adhesion molecule. These studies further suggest that the cytoskeleton contains a defined, saturable number of binding sites for GalTase, which enables it to function as an adhesion molecule.
format Text
id pubmed-2200081
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22000812008-05-01 Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions J Cell Biol Articles In addition to its traditional location within the Golgi complex, beta 1,4-galactosyltransferase (GalTase) is also present on the cell surface, where it is thought to function as a cell adhesion molecule by binding to extracellular oligosaccharide ligands. Recent studies suggest that cells contain two forms of GalTase with distinct cytoplasmic domains. The longer form of GalTase contains a 13-amino acid cytoplasmic extension and is preferentially targeted to the plasma membrane, relative to the shorter GalTase protein that is confined primarily to the Golgi compartment. In this study, we created a dominant negative mutation that interferes with the function of cell surface GalTase by transfecting into cells cDNAs encoding truncated versions of the long form of GalTase containing the complete cytoplasmic and transmembrane domains, but devoid of the catalytic domain. In both F9 embryonal carcinoma cells and Swiss 3T3 fibroblasts, overexpressing the truncated long GalTase (TLGT) protein displaced the endogenous cell surface GalTase from its association with the cytoskeleton, resulting in a loss of intercellular adhesion and cell spreading specifically on matrices that use GalTase as a cell surface receptor. In contrast, overexpressing the analogous truncated short GalTase (TSGT) protein did not affect cell morphology or GalTase activity. In control assays, inducing the TLGT protein had no effect on cell interactions with fibronectin (which is independent of GalTase), or on the cytoskeleton attachment of another matrix receptor (beta 1 integrin), or on overall glycoprotein synthesis, thus eliminating nonspecific effects of the TLGT protein on cellular adhesion and metabolism. These results represent the first molecular manipulation of cell surface GalTase expression and confirm its function as a cell adhesion molecule. These studies further suggest that the cytoskeleton contains a defined, saturable number of binding sites for GalTase, which enables it to function as an adhesion molecule. The Rockefeller University Press 1993-02-02 /pmc/articles/PMC2200081/ /pubmed/8432725 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions
title Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions
title_full Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions
title_fullStr Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions
title_full_unstemmed Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions
title_short Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions
title_sort dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200081/
https://www.ncbi.nlm.nih.gov/pubmed/8432725