Cargando…

Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells

When the four subunits of the Torpedo californica nicotinic acetylcholine receptor (AChR) are expressed in mammalian fibroblasts, they properly assembly into alpha 2 beta gamma delta pentamers only at temperatures lower than 37 degrees C (Claudio, T., W. N. Green, D. S. Hartman, D. Hayden, H. L. Pau...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200171/
https://www.ncbi.nlm.nih.gov/pubmed/2335568
_version_ 1782148279102865408
collection PubMed
description When the four subunits of the Torpedo californica nicotinic acetylcholine receptor (AChR) are expressed in mammalian fibroblasts, they properly assembly into alpha 2 beta gamma delta pentamers only at temperatures lower than 37 degrees C (Claudio, T., W. N. Green, D. S. Hartman, D. Hayden, H. L. Paulson, F. J. Sigworth, S. M. Sine, and A. Swedlund. 1987. Science (Wash. DC). 238:1688-1694). Experiments here with rat L6 myoblast cell lines indicate that this temperature sensitivity is not specific to fibroblasts, but is intrinsic to Torpedo subunits. A clonal isolate of L6 cells cotransfected with the four Torpedo subunit cDNAs synthesizes the exogenous AChR subunits at 37 degrees and 26 degrees C, but expresses Torpedo AChR complexes only at the lower temperature. When Torpedo alpha alone is expressed in L6 myotubes, hybrid AChRs are formed, again only at temperatures below 37 degrees C. These hybrid AChRs can contain either two Torpedo alpha subunits or one each of rat and Torpedo alpha, proving that the two alpha subunits in an AChR pentamer need not derive from the same polysome. Further analysis of hybrid and all-Torpedo AChR established that there is no internally sequestered pool of AChR at the nonpermissive temperature, and that the AChR, once formed, is thermostable. Two lines of experimentation with alpha subunits expressed in fibroblasts indicate that alpha polypeptides exhibit different conformations at 26 degrees and 37 degrees C, favoring the hypothesis that the temperature-sensitive step occurs before assembly and reflects, at least in part, misfolding of subunits: at 37 degrees C, there is a reduction in the fraction of alpha subunits that (a) bind the AChR antagonist alpha-bungarotoxin with high affinity; and (b) bind a monoclonal antibody that recognizes correctly folded and/or assembled alpha subunit.
format Text
id pubmed-2200171
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22001712008-05-01 Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells J Cell Biol Articles When the four subunits of the Torpedo californica nicotinic acetylcholine receptor (AChR) are expressed in mammalian fibroblasts, they properly assembly into alpha 2 beta gamma delta pentamers only at temperatures lower than 37 degrees C (Claudio, T., W. N. Green, D. S. Hartman, D. Hayden, H. L. Paulson, F. J. Sigworth, S. M. Sine, and A. Swedlund. 1987. Science (Wash. DC). 238:1688-1694). Experiments here with rat L6 myoblast cell lines indicate that this temperature sensitivity is not specific to fibroblasts, but is intrinsic to Torpedo subunits. A clonal isolate of L6 cells cotransfected with the four Torpedo subunit cDNAs synthesizes the exogenous AChR subunits at 37 degrees and 26 degrees C, but expresses Torpedo AChR complexes only at the lower temperature. When Torpedo alpha alone is expressed in L6 myotubes, hybrid AChRs are formed, again only at temperatures below 37 degrees C. These hybrid AChRs can contain either two Torpedo alpha subunits or one each of rat and Torpedo alpha, proving that the two alpha subunits in an AChR pentamer need not derive from the same polysome. Further analysis of hybrid and all-Torpedo AChR established that there is no internally sequestered pool of AChR at the nonpermissive temperature, and that the AChR, once formed, is thermostable. Two lines of experimentation with alpha subunits expressed in fibroblasts indicate that alpha polypeptides exhibit different conformations at 26 degrees and 37 degrees C, favoring the hypothesis that the temperature-sensitive step occurs before assembly and reflects, at least in part, misfolding of subunits: at 37 degrees C, there is a reduction in the fraction of alpha subunits that (a) bind the AChR antagonist alpha-bungarotoxin with high affinity; and (b) bind a monoclonal antibody that recognizes correctly folded and/or assembled alpha subunit. The Rockefeller University Press 1990-05-01 /pmc/articles/PMC2200171/ /pubmed/2335568 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells
title Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells
title_full Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells
title_fullStr Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells
title_full_unstemmed Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells
title_short Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells
title_sort temperature-sensitive expression of all-torpedo and torpedo-rat hybrid achr in mammalian muscle cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200171/
https://www.ncbi.nlm.nih.gov/pubmed/2335568