Cargando…
The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation
We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1990
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200184/ https://www.ncbi.nlm.nih.gov/pubmed/2335565 |
_version_ | 1782148282152124416 |
---|---|
collection | PubMed |
description | We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external calcium. Artificial activation via incubation with WGA also results in a calcium wave, albeit with different temporal and spatial characteristics than in sperm-activated eggs. In eggs in which movement of the sperm nucleus after entry is blocked with cytochalasin D, the sperm aster is formed at the site where the calcium wave had previously started. This indicates that the calcium wave starts where the sperm enters. In 70% of the eggs, the calcium wave starts in the animal hemisphere, which confirms previous observations that there is a preference for sperm to enter this part of the egg (Speksnijder, J. E., L. F. Jaffe, and C. Sardet. 1989. Dev. Biol. 133:180-184). About 30-40 s after the calcium wave starts, a slower (1.4 microns/s) wave of cortical contraction starts near the animal pole. It carries the subcortical cytoplasm to a contraction pole, which forms away from the side of sperm entry and up to 50 degrees away from the vegetal pole. We propose that the point of sperm entry may affect the direction of ooplasmic segregation by causing it to tilt away from the vegetal pole, presumably via some action of the calcium wave. |
format | Text |
id | pubmed-2200184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1990 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22001842008-05-01 The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation J Cell Biol Articles We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external calcium. Artificial activation via incubation with WGA also results in a calcium wave, albeit with different temporal and spatial characteristics than in sperm-activated eggs. In eggs in which movement of the sperm nucleus after entry is blocked with cytochalasin D, the sperm aster is formed at the site where the calcium wave had previously started. This indicates that the calcium wave starts where the sperm enters. In 70% of the eggs, the calcium wave starts in the animal hemisphere, which confirms previous observations that there is a preference for sperm to enter this part of the egg (Speksnijder, J. E., L. F. Jaffe, and C. Sardet. 1989. Dev. Biol. 133:180-184). About 30-40 s after the calcium wave starts, a slower (1.4 microns/s) wave of cortical contraction starts near the animal pole. It carries the subcortical cytoplasm to a contraction pole, which forms away from the side of sperm entry and up to 50 degrees away from the vegetal pole. We propose that the point of sperm entry may affect the direction of ooplasmic segregation by causing it to tilt away from the vegetal pole, presumably via some action of the calcium wave. The Rockefeller University Press 1990-05-01 /pmc/articles/PMC2200184/ /pubmed/2335565 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation |
title | The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation |
title_full | The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation |
title_fullStr | The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation |
title_full_unstemmed | The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation |
title_short | The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation |
title_sort | activation wave of calcium in the ascidian egg and its role in ooplasmic segregation |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200184/ https://www.ncbi.nlm.nih.gov/pubmed/2335565 |