Cargando…

The Dynamic Properties of Mammalian Skeletal Muscle

The dynamic characteristics of the rat gracilis anticus muscle at 17.5°C have been determined by isotonic and isometric loading. For a fixed initial length these characteristics were represented either as a family of length-velocity phase trajectories at various isotonic afterloads or as a series of...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahler, Alan S., Fales, John T., Zierler, Kenneth L.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1968
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2201129/
https://www.ncbi.nlm.nih.gov/pubmed/5648833
Descripción
Sumario:The dynamic characteristics of the rat gracilis anticus muscle at 17.5°C have been determined by isotonic and isometric loading. For a fixed initial length these characteristics were represented either as a family of length-velocity phase trajectories at various isotonic afterloads or as a series of force-velocity curves at different lengths. An alternate method of viewing these data, the length-external load-velocity phase space, was also generated. When the muscle was allowed to shorten from different initial lengths, the velocity of shortening achieved at a given length was lower for longer initial lengths. The amount of departure was also dependent upon the isotonic load, the greater the load the greater the departure. The departures were not caused by changes in the elastic elements of the muscle or fatigue in the ordinary sense. When the behavior of the muscle was investigated at different frequencies of stimulation, the shortening velocity was a function of the number of stimulating pulses received by the muscle at a given frequency. The shortening velocity of the rat gracilis anticus muscle is, therefore, not only a function of load and length, but also of an additional variable related to the time elapsed from onset of stimulation.