Cargando…

Mechanisms of Accommodation in Different Types of Frog Neurons

Responses of individual spinal ganglion neurons, sympathetic ganglion neurons, and motoneurons of frogs to linearly rising currents were investigated utilizing microelectrodes for intracellular stimulation and recording. Spinal ganglion neurons exhibited rapid accommodation to linearly rising curren...

Descripción completa

Detalles Bibliográficos
Autores principales: Stoney, S. D., Machne, Xenia
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1969
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2202902/
https://www.ncbi.nlm.nih.gov/pubmed/5764746
Descripción
Sumario:Responses of individual spinal ganglion neurons, sympathetic ganglion neurons, and motoneurons of frogs to linearly rising currents were investigated utilizing microelectrodes for intracellular stimulation and recording. Spinal ganglion neurons exhibited rapid accommodation to linearly rising currents. Minimal current gradients (MCG's) required to excite these neurons (average value, 106 rheobases/sec) were of the same order of magnitude as for some nerve fibers. Although sympathetic ganglion neurons exhibited responses to lower current gradients than spinal ganglion neurons, distinct MCG's (average value, 26 rheobases/sec) could always be established. MCG's could not be detected in most motoneurons, even with current gradients as low as 0.6 rheobase/sec. A few motoneurons exhibited distinct MCG's (average value, 11 rheobases/sec). The failure of spinal ganglion neurons to respond to anything other than rapidly rising currents appears to be due primarily to the development of severe delayed rectification. The inability of sympathetic ganglion neurons to respond to low current gradients appears to depend not only on delayed rectification but also on increases in depolarization threshold. When present in motoneurons, accommodation appears to result from the same mechanisms responsible for its appearance in sympathetic ganglion neurons.