Cargando…

Mechanical Properties of the Sarcolemma and Myoplasm in Frog Muscle as a Function of Sarcomere Length

The elastimeter method was applied to the single muscle fiber of the frog semitendinosus to obtain the elastic moduli of the sarcolemma and myoplasm, as well as their relative contributions to resting fiber tension at different extensions. A bleb which was sucked into a flat-mouthed pipette at the f...

Descripción completa

Detalles Bibliográficos
Autor principal: Rapoport, Stanley I.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1972
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2203191/
https://www.ncbi.nlm.nih.gov/pubmed/4537306
Descripción
Sumario:The elastimeter method was applied to the single muscle fiber of the frog semitendinosus to obtain the elastic moduli of the sarcolemma and myoplasm, as well as their relative contributions to resting fiber tension at different extensions. A bleb which was sucked into a flat-mouthed pipette at the fiber surface separated into an external sarcolemmal membrane and a thick inner myoplasmic region. Measurements showed that the sarcolemma does not contribute to intact fiber tension at sarcomere lengths below 3 µ. It was estimated that the sarcolemma contributed on the order of 10% to intact fiber tension at sarcomere lengths between 3 and 3.75 µ, and more so with further extension. Between these sarcomere lengths, the sarcolemma can be linearly extended and has a longitudinal elastic modulus of 5 x 10(6) dyne/cm(2) (assuming a thickness of 0.1 µ). Resistance to deformation of the inner bleb region is due to myoplasmic elasticity. The myoplasmic elastic modulus was estimated by use of a model and was used to predict a fiber length-tension curve which agreed approximately with observations.