Cargando…

Electrophysiological Control of Reversed Ciliary Beating in Paramecium

Quantitative relations between ciliary reversal and membrane responses were examined in electrically stimulated paramecia. Specimens bathed in 1 mM CaCl(2), 1 mM KCl, and 1 mM Tris-HCl, pH 7.2, were filmed at 250 frames per second while depolarizing current pulses were injected. At current intensiti...

Descripción completa

Detalles Bibliográficos
Autores principales: Machemer, Hans, Eckert, Roger
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1973
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2203482/
https://www.ncbi.nlm.nih.gov/pubmed/4705638
Descripción
Sumario:Quantitative relations between ciliary reversal and membrane responses were examined in electrically stimulated paramecia. Specimens bathed in 1 mM CaCl(2), 1 mM KCl, and 1 mM Tris-HCl, pH 7.2, were filmed at 250 frames per second while depolarizing current pulses were injected. At current intensities producing only electrotonic shifts the cilia failed to respond. Stimuli which elicited a regenerative response were followed by a period of reversed ciliary beating. With increasing stimulus intensities the latency of ciliary reversal dropped from 30 to 4 ms or less, and the duration of reversal increased from 50 ms to 2.4 s or more; the corresponding regenerative responses increased in amplitude and rate of rise. With progressively larger intracellular positive pulses, electric stimulation became less effective, producing responses with a progressive increase in latency and decrease in duration of reversed beating of the cilia. When 100-ms pulses shifted the membrane potential to +70 mV or more, ciliary reversal was suppressed until the end of the pulse. "Off" responses then occurred with a latency of 2–4 ms independent of further increases in positive potential displacement. These results suggest that ciliary reversal is coupled to membrane depolarization by the influx of ions which produces the regenerative depolarization of the surface membrane. According to this view suppression of the ciliary response during stimulation occurs when the membrane potential approaches the equilibrium potential of the coupling ion, thereby retarding its influx. Previous data together with the present findings suggest that this ion is Ca(2+).