Cargando…

Control of Retinal Sensitivity : I. Light and Dark Adaptation of Vertebrate Rods and Cones

Rods and cones in Necturus respond with graded hyperpolarization to test flashes spanning about 3.5 log units of intensity. Steady background levels hyperpolarize the rods, and the rod responses become progressively smaller as background level is increased. In cones, higher background levels reduce...

Descripción completa

Detalles Bibliográficos
Autores principales: Normann, Richard A., Werblin, Frank S.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1974
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2203542/
https://www.ncbi.nlm.nih.gov/pubmed/4359063
Descripción
Sumario:Rods and cones in Necturus respond with graded hyperpolarization to test flashes spanning about 3.5 log units of intensity. Steady background levels hyperpolarize the rods, and the rod responses become progressively smaller as background level is increased. In cones, higher background levels reduce the effectiveness of test flashes, so higher ranges of test intensities are required to elicit the full range of graded responses. When backgrounds are terminated, cones return rapidly, but rods return slowly to the dark potential level. The effects of backgrounds on both rods and cones can be observed at intensities that cause negligible bleaching as determined by retinal densitometry. During dark adaptation, changes are observed in the rods and cones that are similar to those produced by backgrounds. Receptor sensitivities, derived from these results, show that rods saturate, cones obey Weber's law, and sensitization during dark adaptation follows a two-phase time-course.