Cargando…
Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons
We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent w...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1974
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2203571/ https://www.ncbi.nlm.nih.gov/pubmed/4829524 |
_version_ | 1782148400555229184 |
---|---|
author | Begenisich, Ted Lynch, Carl |
author_facet | Begenisich, Ted Lynch, Carl |
author_sort | Begenisich, Ted |
collection | PubMed |
description | We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent with the notion that an increase in the internal calcium concentration produced by an inward calcium movement with the action potential triggers sodium inactivation or potassium activation. Low internal zinc concentrations (∼1 mM) selectively and reversibly slow the kinetics of the potassium current and reduce peak sodium current by about 40% with little effect on the voltage dependence of the ionic currents. Higher concentrations (∼10 mM) produce a considerable (ca. 90%) nonspecific reversible reduction of the ionic currents. Large hyperpolarizing conditioning pulses reduce the zinc effect. Internal zinc also reversibly depolarizes the axon by 20–30 mV. The effects of internal cobalt, cadmium, and nickel are qualitatively similar to those of zinc: only calcium among the cations tested is without effect. |
format | Text |
id | pubmed-2203571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1974 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22035712008-04-23 Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons Begenisich, Ted Lynch, Carl J Gen Physiol Article We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent with the notion that an increase in the internal calcium concentration produced by an inward calcium movement with the action potential triggers sodium inactivation or potassium activation. Low internal zinc concentrations (∼1 mM) selectively and reversibly slow the kinetics of the potassium current and reduce peak sodium current by about 40% with little effect on the voltage dependence of the ionic currents. Higher concentrations (∼10 mM) produce a considerable (ca. 90%) nonspecific reversible reduction of the ionic currents. Large hyperpolarizing conditioning pulses reduce the zinc effect. Internal zinc also reversibly depolarizes the axon by 20–30 mV. The effects of internal cobalt, cadmium, and nickel are qualitatively similar to those of zinc: only calcium among the cations tested is without effect. The Rockefeller University Press 1974-06-01 /pmc/articles/PMC2203571/ /pubmed/4829524 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Begenisich, Ted Lynch, Carl Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons |
title | Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons |
title_full | Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons |
title_fullStr | Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons |
title_full_unstemmed | Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons |
title_short | Effects of Internal Divalent Cations on Voltage-Clamped Squid Axons |
title_sort | effects of internal divalent cations on voltage-clamped squid axons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2203571/ https://www.ncbi.nlm.nih.gov/pubmed/4829524 |
work_keys_str_mv | AT begenisichted effectsofinternaldivalentcationsonvoltageclampedsquidaxons AT lynchcarl effectsofinternaldivalentcationsonvoltageclampedsquidaxons |