Cargando…

Tight glycaemic control: a prospective observational study of a computerised decision-supported intensive insulin therapy protocol

INTRODUCTION: A single centre has reported that implementation of an intensive insulin protocol, aiming for tight glycaemic control (blood glucose 4.4 to 6.1 mmol/l), resulted in significant reduction in mortality in longer stay medical and surgical critically ill patients. Our aim was to determine...

Descripción completa

Detalles Bibliográficos
Autores principales: Shulman, Rob, Finney, Simon J, O'Sullivan, Caoimhe, Glynne, Paul A, Greene, Russell
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206495/
https://www.ncbi.nlm.nih.gov/pubmed/17623086
http://dx.doi.org/10.1186/cc5964
Descripción
Sumario:INTRODUCTION: A single centre has reported that implementation of an intensive insulin protocol, aiming for tight glycaemic control (blood glucose 4.4 to 6.1 mmol/l), resulted in significant reduction in mortality in longer stay medical and surgical critically ill patients. Our aim was to determine the degree to which tight glycaemic control can be maintained using an intensive insulin therapy protocol with computerized decision support and to identify factors that may be associated with the degree of control. METHODS: At a general adult 22-bed intensive care unit, we implemented an intensive insulin therapy protocol in mechanically ventilated patients, aiming for a target glucose range of 4.4 to 6.1 mmol/l. The protocol was integrated into the computerized information management system by way of a decision support program. The time spent in each predefined blood glucose band was estimated, assuming a linear trend between measurements. RESULTS: Fifty consecutive patients were investigated, involving analysis of 7,209 blood glucose samples, over 9,214 hours. The target tight glycaemic control band (4.4 to 6.1 mmol/l) was achieved for a median of 23.1% of the time that patients were receiving intensive insulin therapy. Nearly half of the time (median 48.5%), blood glucose was within the band 6.2 to 7.99 mmol/l. Univariate analysis revealed that body mass index (BMI), Acute Physiology and Chronic Health Evaluation (APACHE) II score and previous diabetes each explained approximately 10% of the variability in tight glycaemic control. BMI and APACHE II score explained most (27%) of the variability in tight glycaemic control in the multivariate analysis, after adjusting for age and previous diabetes. CONCLUSION: Use of the computerized decision supported intensive insulin therapy protocol did result in achievement of tight glycaemic control for a substantial percentage of each patient's stay, although it did deliver 'normoglycaemia' (4.4 to about 8 mmol/l) for nearly 75% of the time. Tight glycaemic control was difficult to achieve in critically ill patients using this protocol. More sophisticated methods such as continuous blood glucose monitoring with automated insulin and glucose infusion adjustment may be a more effective way to achieve tight glycaemic control. Glycaemia in patients with high BMI and APACHE II scores may be more difficult to control using intensive insulin therapy protocols. Trial registration number 05/Q0505/1.