Cargando…
Modeling longitudinal data in acute illness
Biomarkers of sepsis could allow early identification of high-risk patients, in whom aggressive interventions can be life-saving. Among those interventions are the immunomodulatory therapies, which will hopefully become increasingly available to clinicians. However, optimal use of such interventions...
Autor principal: | Clermont, Gilles |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206522/ https://www.ncbi.nlm.nih.gov/pubmed/17688677 http://dx.doi.org/10.1186/cc5968 |
Ejemplares similares
-
Artificial neural networks as prediction tools in the critically ill
por: Clermont, Gilles
Publicado: (2005) -
Plasma citrulline in the critically ill: intriguing biomarker, cautious interpretation
por: Piton, Gaël, et al.
Publicado: (2015) -
Computational disease modeling – fact or fiction?
por: Tegnér, Jesper N, et al.
Publicado: (2009) -
The role of thyroid hormone therapy in acutely ill cardiac patients
por: Wyne, Kathleen L
Publicado: (2005) -
Critically Ill Definitions in Acute Kidney Injury Clinical Research
por: Stevens, Jacob S.
Publicado: (2018)