Cargando…
Why is Real-World Visual Object Recognition Hard?
Progress in understanding the brain mechanisms underlying vision requires the construction of computational models that not only emulate the brain's anatomy and physiology, but ultimately match its performance on visual tasks. In recent years, “natural” images have become popular in the study o...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211529/ https://www.ncbi.nlm.nih.gov/pubmed/18225950 http://dx.doi.org/10.1371/journal.pcbi.0040027 |
_version_ | 1782148534091382784 |
---|---|
author | Pinto, Nicolas Cox, David D DiCarlo, James J |
author_facet | Pinto, Nicolas Cox, David D DiCarlo, James J |
author_sort | Pinto, Nicolas |
collection | PubMed |
description | Progress in understanding the brain mechanisms underlying vision requires the construction of computational models that not only emulate the brain's anatomy and physiology, but ultimately match its performance on visual tasks. In recent years, “natural” images have become popular in the study of vision and have been used to show apparently impressive progress in building such models. Here, we challenge the use of uncontrolled “natural” images in guiding that progress. In particular, we show that a simple V1-like model—a neuroscientist's “null” model, which should perform poorly at real-world visual object recognition tasks—outperforms state-of-the-art object recognition systems (biologically inspired and otherwise) on a standard, ostensibly natural image recognition test. As a counterpoint, we designed a “simpler” recognition test to better span the real-world variation in object pose, position, and scale, and we show that this test correctly exposes the inadequacy of the V1-like model. Taken together, these results demonstrate that tests based on uncontrolled natural images can be seriously misleading, potentially guiding progress in the wrong direction. Instead, we reexamine what it means for images to be natural and argue for a renewed focus on the core problem of object recognition—real-world image variation. |
format | Text |
id | pubmed-2211529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-22115292008-01-25 Why is Real-World Visual Object Recognition Hard? Pinto, Nicolas Cox, David D DiCarlo, James J PLoS Comput Biol Research Article Progress in understanding the brain mechanisms underlying vision requires the construction of computational models that not only emulate the brain's anatomy and physiology, but ultimately match its performance on visual tasks. In recent years, “natural” images have become popular in the study of vision and have been used to show apparently impressive progress in building such models. Here, we challenge the use of uncontrolled “natural” images in guiding that progress. In particular, we show that a simple V1-like model—a neuroscientist's “null” model, which should perform poorly at real-world visual object recognition tasks—outperforms state-of-the-art object recognition systems (biologically inspired and otherwise) on a standard, ostensibly natural image recognition test. As a counterpoint, we designed a “simpler” recognition test to better span the real-world variation in object pose, position, and scale, and we show that this test correctly exposes the inadequacy of the V1-like model. Taken together, these results demonstrate that tests based on uncontrolled natural images can be seriously misleading, potentially guiding progress in the wrong direction. Instead, we reexamine what it means for images to be natural and argue for a renewed focus on the core problem of object recognition—real-world image variation. Public Library of Science 2008-01 2008-01-25 /pmc/articles/PMC2211529/ /pubmed/18225950 http://dx.doi.org/10.1371/journal.pcbi.0040027 Text en © 2008 Pinto et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Pinto, Nicolas Cox, David D DiCarlo, James J Why is Real-World Visual Object Recognition Hard? |
title | Why is Real-World Visual Object Recognition Hard? |
title_full | Why is Real-World Visual Object Recognition Hard? |
title_fullStr | Why is Real-World Visual Object Recognition Hard? |
title_full_unstemmed | Why is Real-World Visual Object Recognition Hard? |
title_short | Why is Real-World Visual Object Recognition Hard? |
title_sort | why is real-world visual object recognition hard? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211529/ https://www.ncbi.nlm.nih.gov/pubmed/18225950 http://dx.doi.org/10.1371/journal.pcbi.0040027 |
work_keys_str_mv | AT pintonicolas whyisrealworldvisualobjectrecognitionhard AT coxdavidd whyisrealworldvisualobjectrecognitionhard AT dicarlojamesj whyisrealworldvisualobjectrecognitionhard |