Cargando…
Statistical validation of megavariate effects in ASCA
BACKGROUND: Innovative extensions of (M) ANOVA gain common ground for the analysis of designed metabolomics experiments. ASCA is such a multivariate analysis method; it has successfully estimated effects in megavariate metabolomics data from biological experiments. However, rigorous statistical vali...
Autores principales: | Vis, Daniel J, Westerhuis, Johan A, Smilde, Age K, van der Greef, Jan |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211757/ https://www.ncbi.nlm.nih.gov/pubmed/17760983 http://dx.doi.org/10.1186/1471-2105-8-322 |
Ejemplares similares
-
Assessing the performance of statistical validation tools for megavariate metabolomics data
por: Rubingh, Carina M., et al.
Publicado: (2006) -
Repeated measures ASCA+ for analysis of longitudinal intervention studies with multivariate outcome data
por: Madssen, Torfinn S., et al.
Publicado: (2021) -
Analysis of high-dimensional metabolomics data with complex temporal dynamics using RM-ASCA+
por: Erdős, Balázs, et al.
Publicado: (2023) -
Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies
por: Szymańska, Ewa, et al.
Publicado: (2011) -
Network Identification of Hormonal Regulation
por: Vis, Daniel J., et al.
Publicado: (2014)