Cargando…
Engraftment of Bone Marrow from Severe Combined Immunodeficient (SCID) Mice Reverses the Reproductive Deficits in Natural Killer Cell–deficient tgε26 Mice
A large, transient population of natural killer (NK) cells appears in the murine uterine mesometrial triangle during pregnancy. Depletion of uterine (u) NK cells, recently achieved using gene-ablated and transgenic mice, results in pathology. Pregnancies from matings of homozygous NK and T cell–defi...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212103/ https://www.ncbi.nlm.nih.gov/pubmed/9432979 |
_version_ | 1782148624996630528 |
---|---|
author | Guimond, Marie-Josée Wang, Baoping Croy, B. Anne |
author_facet | Guimond, Marie-Josée Wang, Baoping Croy, B. Anne |
author_sort | Guimond, Marie-Josée |
collection | PubMed |
description | A large, transient population of natural killer (NK) cells appears in the murine uterine mesometrial triangle during pregnancy. Depletion of uterine (u) NK cells, recently achieved using gene-ablated and transgenic mice, results in pathology. Pregnancies from matings of homozygous NK and T cell–deficient tgε26 mice have <1% of normal uNK cell frequency, no development of an implantation site–associated metrial gland, and an edematous decidua with vascular pathology that includes abnormally high vessel walls/lumens ratios. Fetal loss of 64% occurs midgestation and placentae are small. None of these features are seen in pregnant T cell–deficient mice. To confirm the role of the NK cell deficiency in these reproductive deficits, transplantation of tgε26 females was undertaken using bone marrow from B and T cell–deficient scid/scid donors. Engrafted pregnant females have restoration of the uNK cell population, induced metrial gland differentiation, reduced anomalies in the decidua and decidual blood vessels, increased placental sizes, and restoration of fetal viability at all gestational days studied (days 10, 12, and 14). Thus, uNK cells appear to have critical functions in pregnancy that promote decidual health, the appropriate vascularization of implantation sites, and placental size. |
format | Text |
id | pubmed-2212103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1998 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22121032008-04-16 Engraftment of Bone Marrow from Severe Combined Immunodeficient (SCID) Mice Reverses the Reproductive Deficits in Natural Killer Cell–deficient tgε26 Mice Guimond, Marie-Josée Wang, Baoping Croy, B. Anne J Exp Med Article A large, transient population of natural killer (NK) cells appears in the murine uterine mesometrial triangle during pregnancy. Depletion of uterine (u) NK cells, recently achieved using gene-ablated and transgenic mice, results in pathology. Pregnancies from matings of homozygous NK and T cell–deficient tgε26 mice have <1% of normal uNK cell frequency, no development of an implantation site–associated metrial gland, and an edematous decidua with vascular pathology that includes abnormally high vessel walls/lumens ratios. Fetal loss of 64% occurs midgestation and placentae are small. None of these features are seen in pregnant T cell–deficient mice. To confirm the role of the NK cell deficiency in these reproductive deficits, transplantation of tgε26 females was undertaken using bone marrow from B and T cell–deficient scid/scid donors. Engrafted pregnant females have restoration of the uNK cell population, induced metrial gland differentiation, reduced anomalies in the decidua and decidual blood vessels, increased placental sizes, and restoration of fetal viability at all gestational days studied (days 10, 12, and 14). Thus, uNK cells appear to have critical functions in pregnancy that promote decidual health, the appropriate vascularization of implantation sites, and placental size. The Rockefeller University Press 1998-01-19 /pmc/articles/PMC2212103/ /pubmed/9432979 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Guimond, Marie-Josée Wang, Baoping Croy, B. Anne Engraftment of Bone Marrow from Severe Combined Immunodeficient (SCID) Mice Reverses the Reproductive Deficits in Natural Killer Cell–deficient tgε26 Mice |
title | Engraftment of Bone Marrow from Severe Combined Immunodeficient (SCID) Mice Reverses the Reproductive Deficits in Natural Killer Cell–deficient tgε26 Mice |
title_full | Engraftment of Bone Marrow from Severe Combined Immunodeficient (SCID) Mice Reverses the Reproductive Deficits in Natural Killer Cell–deficient tgε26 Mice |
title_fullStr | Engraftment of Bone Marrow from Severe Combined Immunodeficient (SCID) Mice Reverses the Reproductive Deficits in Natural Killer Cell–deficient tgε26 Mice |
title_full_unstemmed | Engraftment of Bone Marrow from Severe Combined Immunodeficient (SCID) Mice Reverses the Reproductive Deficits in Natural Killer Cell–deficient tgε26 Mice |
title_short | Engraftment of Bone Marrow from Severe Combined Immunodeficient (SCID) Mice Reverses the Reproductive Deficits in Natural Killer Cell–deficient tgε26 Mice |
title_sort | engraftment of bone marrow from severe combined immunodeficient (scid) mice reverses the reproductive deficits in natural killer cell–deficient tgε26 mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212103/ https://www.ncbi.nlm.nih.gov/pubmed/9432979 |
work_keys_str_mv | AT guimondmariejosee engraftmentofbonemarrowfromseverecombinedimmunodeficientscidmicereversesthereproductivedeficitsinnaturalkillercelldeficienttge26mice AT wangbaoping engraftmentofbonemarrowfromseverecombinedimmunodeficientscidmicereversesthereproductivedeficitsinnaturalkillercelldeficienttge26mice AT croybanne engraftmentofbonemarrowfromseverecombinedimmunodeficientscidmicereversesthereproductivedeficitsinnaturalkillercelldeficienttge26mice |