Cargando…
Interferon Enhances Tumor Necrosis Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial Cells by an Interferon-related Factor 1–dependent Pathway
Tumor necrosis factor (TNF) and interleukin 1 are known to initiate endothelial vascular cell adhesion molecule (VCAM)-1 transcription primarily by activating nuclear factor (NF)-κB, which translocates to the nucleus. In addition to two NF-κB elements found within the minimal cytokine-inducible VCAM...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212361/ https://www.ncbi.nlm.nih.gov/pubmed/9625761 |
_version_ | 1782148675960569856 |
---|---|
author | Lechleitner, Sonja Gille, Jens Johnson, David R. Petzelbauer, Peter |
author_facet | Lechleitner, Sonja Gille, Jens Johnson, David R. Petzelbauer, Peter |
author_sort | Lechleitner, Sonja |
collection | PubMed |
description | Tumor necrosis factor (TNF) and interleukin 1 are known to initiate endothelial vascular cell adhesion molecule (VCAM)-1 transcription primarily by activating nuclear factor (NF)-κB, which translocates to the nucleus. In addition to two NF-κB elements found within the minimal cytokine-inducible VCAM-1 promoter, an interferon-related factor (IRF) element (IRF-1) has been identified close to the transcription initiation site, suggesting that cytokines that induce IRF-1 might affect VCAM-1 expression levels. We therefore investigated the effects of interferons (IFNs), which strongly induce IRF-1, on VCAM-1 transcription and expression. We show that IFN-α and -γ enhance TNF-induced VCAM-1 mRNA transcription and protein expression in human endothelial cells. IFN enhancement of TNF-induced expression is also seen using chloramphenicol acetyl transferase reporter genes linked to the minimal cytokine inducible VCAM-1 promoter. Nuclear IRF-1 is the molecular basis of IFN enhancement, because (a) IFN plus TNF–treated cells displayed increased nuclear IRF-1 levels and increased IRF-1 binding to the VCAM-1 promoter, compared with cells treated with TNF alone; (b) kinetics of nuclear IRF-1 levels correlated with VCAM-1 mRNA levels; (c) transfection with an IRF-1 construct substituted for IFN treatment; and (d) transfection with an expression construct encoding IRF-2, a competitive inhibitor of IRF-1, reduced TNF-induced VCAM-1 expression. Our experiments show that IFN amplifies TNF-induced VCAM-1 expression at the transcriptional level by an IRF-1–dependent pathway. |
format | Text |
id | pubmed-2212361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1998 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22123612008-04-16 Interferon Enhances Tumor Necrosis Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial Cells by an Interferon-related Factor 1–dependent Pathway Lechleitner, Sonja Gille, Jens Johnson, David R. Petzelbauer, Peter J Exp Med Articles Tumor necrosis factor (TNF) and interleukin 1 are known to initiate endothelial vascular cell adhesion molecule (VCAM)-1 transcription primarily by activating nuclear factor (NF)-κB, which translocates to the nucleus. In addition to two NF-κB elements found within the minimal cytokine-inducible VCAM-1 promoter, an interferon-related factor (IRF) element (IRF-1) has been identified close to the transcription initiation site, suggesting that cytokines that induce IRF-1 might affect VCAM-1 expression levels. We therefore investigated the effects of interferons (IFNs), which strongly induce IRF-1, on VCAM-1 transcription and expression. We show that IFN-α and -γ enhance TNF-induced VCAM-1 mRNA transcription and protein expression in human endothelial cells. IFN enhancement of TNF-induced expression is also seen using chloramphenicol acetyl transferase reporter genes linked to the minimal cytokine inducible VCAM-1 promoter. Nuclear IRF-1 is the molecular basis of IFN enhancement, because (a) IFN plus TNF–treated cells displayed increased nuclear IRF-1 levels and increased IRF-1 binding to the VCAM-1 promoter, compared with cells treated with TNF alone; (b) kinetics of nuclear IRF-1 levels correlated with VCAM-1 mRNA levels; (c) transfection with an IRF-1 construct substituted for IFN treatment; and (d) transfection with an expression construct encoding IRF-2, a competitive inhibitor of IRF-1, reduced TNF-induced VCAM-1 expression. Our experiments show that IFN amplifies TNF-induced VCAM-1 expression at the transcriptional level by an IRF-1–dependent pathway. The Rockefeller University Press 1998-06-15 /pmc/articles/PMC2212361/ /pubmed/9625761 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Lechleitner, Sonja Gille, Jens Johnson, David R. Petzelbauer, Peter Interferon Enhances Tumor Necrosis Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial Cells by an Interferon-related Factor 1–dependent Pathway |
title | Interferon Enhances Tumor Necrosis Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial Cells by an Interferon-related Factor 1–dependent Pathway |
title_full | Interferon Enhances Tumor Necrosis Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial Cells by an Interferon-related Factor 1–dependent Pathway |
title_fullStr | Interferon Enhances Tumor Necrosis Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial Cells by an Interferon-related Factor 1–dependent Pathway |
title_full_unstemmed | Interferon Enhances Tumor Necrosis Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial Cells by an Interferon-related Factor 1–dependent Pathway |
title_short | Interferon Enhances Tumor Necrosis Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial Cells by an Interferon-related Factor 1–dependent Pathway |
title_sort | interferon enhances tumor necrosis factor–induced vascular cell adhesion molecule 1 (cd106) expression in human endothelial cells by an interferon-related factor 1–dependent pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212361/ https://www.ncbi.nlm.nih.gov/pubmed/9625761 |
work_keys_str_mv | AT lechleitnersonja interferonenhancestumornecrosisfactorinducedvascularcelladhesionmolecule1cd106expressioninhumanendothelialcellsbyaninterferonrelatedfactor1dependentpathway AT gillejens interferonenhancestumornecrosisfactorinducedvascularcelladhesionmolecule1cd106expressioninhumanendothelialcellsbyaninterferonrelatedfactor1dependentpathway AT johnsondavidr interferonenhancestumornecrosisfactorinducedvascularcelladhesionmolecule1cd106expressioninhumanendothelialcellsbyaninterferonrelatedfactor1dependentpathway AT petzelbauerpeter interferonenhancestumornecrosisfactorinducedvascularcelladhesionmolecule1cd106expressioninhumanendothelialcellsbyaninterferonrelatedfactor1dependentpathway |