Cargando…
NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor
Inhibition of NF-κB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212584/ https://www.ncbi.nlm.nih.gov/pubmed/17892600 http://dx.doi.org/10.1186/ar2298 |
_version_ | 1782148729209356288 |
---|---|
author | Kubota, Tetsuo Hoshino, Machiko Aoki, Kazuhiro Ohya, Keiichi Komano, Yukiko Nanki, Toshihiro Miyasaka, Nobuyuki Umezawa, Kazuo |
author_facet | Kubota, Tetsuo Hoshino, Machiko Aoki, Kazuhiro Ohya, Keiichi Komano, Yukiko Nanki, Toshihiro Miyasaka, Nobuyuki Umezawa, Kazuo |
author_sort | Kubota, Tetsuo |
collection | PubMed |
description | Inhibition of NF-κB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-κB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-κB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-κB inhibitors to rheumatoid arthritis therapy. |
format | Text |
id | pubmed-2212584 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22125842008-01-24 NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor Kubota, Tetsuo Hoshino, Machiko Aoki, Kazuhiro Ohya, Keiichi Komano, Yukiko Nanki, Toshihiro Miyasaka, Nobuyuki Umezawa, Kazuo Arthritis Res Ther Research Article Inhibition of NF-κB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-κB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-κB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-κB inhibitors to rheumatoid arthritis therapy. BioMed Central 2007 2007-09-25 /pmc/articles/PMC2212584/ /pubmed/17892600 http://dx.doi.org/10.1186/ar2298 Text en Copyright © 2007 Kubota et al., licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kubota, Tetsuo Hoshino, Machiko Aoki, Kazuhiro Ohya, Keiichi Komano, Yukiko Nanki, Toshihiro Miyasaka, Nobuyuki Umezawa, Kazuo NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor |
title | NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor |
title_full | NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor |
title_fullStr | NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor |
title_full_unstemmed | NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor |
title_short | NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor |
title_sort | nf-κb inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of nfatc1 in mouse arthritis without affecting expression of rankl, osteoprotegerin or macrophage colony-stimulating factor |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212584/ https://www.ncbi.nlm.nih.gov/pubmed/17892600 http://dx.doi.org/10.1186/ar2298 |
work_keys_str_mv | AT kubotatetsuo nfkbinhibitordehydroxymethylepoxyquinomicinsuppressesosteoclastogenesisandexpressionofnfatc1inmousearthritiswithoutaffectingexpressionofranklosteoprotegerinormacrophagecolonystimulatingfactor AT hoshinomachiko nfkbinhibitordehydroxymethylepoxyquinomicinsuppressesosteoclastogenesisandexpressionofnfatc1inmousearthritiswithoutaffectingexpressionofranklosteoprotegerinormacrophagecolonystimulatingfactor AT aokikazuhiro nfkbinhibitordehydroxymethylepoxyquinomicinsuppressesosteoclastogenesisandexpressionofnfatc1inmousearthritiswithoutaffectingexpressionofranklosteoprotegerinormacrophagecolonystimulatingfactor AT ohyakeiichi nfkbinhibitordehydroxymethylepoxyquinomicinsuppressesosteoclastogenesisandexpressionofnfatc1inmousearthritiswithoutaffectingexpressionofranklosteoprotegerinormacrophagecolonystimulatingfactor AT komanoyukiko nfkbinhibitordehydroxymethylepoxyquinomicinsuppressesosteoclastogenesisandexpressionofnfatc1inmousearthritiswithoutaffectingexpressionofranklosteoprotegerinormacrophagecolonystimulatingfactor AT nankitoshihiro nfkbinhibitordehydroxymethylepoxyquinomicinsuppressesosteoclastogenesisandexpressionofnfatc1inmousearthritiswithoutaffectingexpressionofranklosteoprotegerinormacrophagecolonystimulatingfactor AT miyasakanobuyuki nfkbinhibitordehydroxymethylepoxyquinomicinsuppressesosteoclastogenesisandexpressionofnfatc1inmousearthritiswithoutaffectingexpressionofranklosteoprotegerinormacrophagecolonystimulatingfactor AT umezawakazuo nfkbinhibitordehydroxymethylepoxyquinomicinsuppressesosteoclastogenesisandexpressionofnfatc1inmousearthritiswithoutaffectingexpressionofranklosteoprotegerinormacrophagecolonystimulatingfactor |