Cargando…
Percent body fat estimations in college women using field and laboratory methods: a three-compartment model approach
BACKGROUND: Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. This investigation sought to determine the validity of field and laboratory metho...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212632/ https://www.ncbi.nlm.nih.gov/pubmed/17988393 http://dx.doi.org/10.1186/1550-2783-4-16 |
Sumario: | BACKGROUND: Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. This investigation sought to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age women compared to the Siri three-compartment model (3C). METHODS: Thirty Caucasian women (21.1 ± 1.5 yrs; 164.8 ± 4.7 cm; 61.2 ± 6.8 kg) had their %fat estimated by BIA using the BodyGram™ computer program (BIA-AK) and population-specific equation (BIA-Lohman), NIR (Futrex(® )6100/XL), a quadratic (SF3JPW) and linear (SF3WB) skinfold equation, air-displacement plethysmography (BP), and hydrostatic weighing (HW). RESULTS: All methods produced acceptable total error (TE) values compared to the 3C model. Both laboratory methods produced similar TE values (HW, TE = 2.4%fat; BP, TE = 2.3%fat) when compared to the 3C model, though a significant constant error (CE) was detected for HW (1.5%fat, p ≤ 0.006). The field methods produced acceptable TE values ranging from 1.8 – 3.8 %fat. BIA-AK (TE = 1.8%fat) yielded the lowest TE among the field methods, while BIA-Lohman (TE = 2.1%fat) and NIR (TE = 2.7%fat) produced lower TE values than both skinfold equations (TE > 2.7%fat) compared to the 3C model. Additionally, the SF3JPW %fat estimation equation resulted in a significant CE (2.6%fat, p ≤ 0.007). CONCLUSION: Data suggest that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian women. When the use of a laboratory method is not feasible, NIR, BIA-AK, BIA-Lohman, SF3JPW, and SF3WB are acceptable field methods to estimate %fat in this population. |
---|