Cargando…

Regulation of natural cytotoxicity by the adaptor SAP and the Src-related kinase Fyn

SAP is an adaptor protein that is expressed in NK and T cells. It is mutated in humans who have X-linked lymphoproliferative (XLP) disease. By interacting with SLAM family receptors, SAP enables tyrosine phosphorylation signaling of these receptors by its ability to recruit the Src-related kinase, F...

Descripción completa

Detalles Bibliográficos
Autores principales: Bloch-Queyrat, Coralie, Fondanèche, Marie-Claude, Chen, Riyan, Yin, Luo, Relouzat, Francis, Veillette, André, Fischer, Alain, Latour, Sylvain
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212903/
https://www.ncbi.nlm.nih.gov/pubmed/15998796
http://dx.doi.org/10.1084/jem.20050449
Descripción
Sumario:SAP is an adaptor protein that is expressed in NK and T cells. It is mutated in humans who have X-linked lymphoproliferative (XLP) disease. By interacting with SLAM family receptors, SAP enables tyrosine phosphorylation signaling of these receptors by its ability to recruit the Src-related kinase, Fyn. Here, we analyzed the role of SAP in NK cell functions using the SAP-deficient mouse model. Our results showed that SAP was required for the ability of NK cells to eliminate tumor cells in vitro and in vivo. This effect strongly correlated with expression of CD48 on tumor cells, the ligand of 2B4, a SLAM-related receptor expressed in NK cells. In keeping with earlier reports that studied human NK cells, we showed that SAP was necessary for the ability of 2B4 to trigger cytotoxicity and IFN-γ secretion. In the absence of SAP, 2B4 function was shifted toward inhibition of NK cell–mediated cytotoxicity. By analyzing mice lacking Fyn, we showed that similarly to SAP, Fyn was strictly required for 2B4 function. Taken together, these results provide evidence that the 2B4-SAP-Fyn cascade defines a potent activating pathway of natural cytotoxicity. They also could help to explain the high propensity of patients who have XLP disease to develop lymphoproliferative disorders.