Cargando…
FASL –844C polymorphism is associated with increased activation-induced T cell death and risk of cervical cancer
The FAS receptor–ligand system plays a key role in regulating apoptotic cell death, and corruption of this signaling pathway has been shown to participate in tumor-immune escape and carcinogenesis. We have recently demonstrated (Sun, T., X. Miao, X. Zhang, W. Tan, P. Xiong, and D. Lin. 2004. J. Natl...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213165/ https://www.ncbi.nlm.nih.gov/pubmed/16186185 http://dx.doi.org/10.1084/jem.20050707 |
Sumario: | The FAS receptor–ligand system plays a key role in regulating apoptotic cell death, and corruption of this signaling pathway has been shown to participate in tumor-immune escape and carcinogenesis. We have recently demonstrated (Sun, T., X. Miao, X. Zhang, W. Tan, P. Xiong, and D. Lin. 2004. J. Natl. Cancer Inst. 96:1030–1036; Zhang, X., X. Miao, T. Sun, W. Tan, S. Qu, P. Xiong, Y. Zhou, and D. Lin. 2005. J. Med. Genet. 42:479–484) that functional polymorphisms in FAS and FAS ligand (FASL) are associated with susceptibility to lung cancer and esophageal cancer; however, the mechanisms underlying this association have not been elucidated. We show that the FAS –1377G, FAS –670A, and FASL –844T variants are expressed more highly on ex vivo–stimulated T cells than the FAS –1377A, FAS –670G, and FASL –844C variants. Moreover, activation-induced cell death (AICD) of T cells carrying the FASL –844C allele was increased. We also found a threefold increased risk of cervical cancer among subjects with the FASL –844CC genotype compared with those with the –844TT genotype in a case-control study in Chinese women. Together, these observations suggest that genetic polymorphisms in the FAS–FASL pathway confer host susceptibility to cervical cancers, which might be caused by immune escape of tumor cells because of enhanced AICD of tumor-specific T cells. |
---|