Cargando…
Supraoptimal Peptide–Major Histocompatibility Complex Causes a Decrease in Bcl-2 Levels and Allows Tumor Necrosis Factor α Receptor II–mediated Apoptosis of Cytotoxic T Lymphocytes
Cytotoxic T lymphocytes (CTLs) are primary mediators of viral clearance, but high viral burden can result in deletion of antigen-specific CTLs. We previously reported a potential mechanism for this deletion: tumor necrosis factor (TNF)-α–mediated apoptosis resulting from stimulation with supraoptima...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213409/ https://www.ncbi.nlm.nih.gov/pubmed/9782116 |
Sumario: | Cytotoxic T lymphocytes (CTLs) are primary mediators of viral clearance, but high viral burden can result in deletion of antigen-specific CTLs. We previously reported a potential mechanism for this deletion: tumor necrosis factor (TNF)-α–mediated apoptosis resulting from stimulation with supraoptimal peptide–major histocompatibility complex. Here, we show that although death is mediated by TNF-α and its receptor (TNF-RII), surprisingly neither the antigen dose dependence of TNF-α production nor that of TNF-RII expression can account for the dose dependence of apoptosis. Rather, a previously unrecognized effect of supraoptimal antigen in markedly decreasing levels of the antiapoptotic protein Bcl-2 was discovered and is likely to account for the gain in susceptibility or competence to sustain the death signal through TNF-RII. This decrease requires a signal through the TCR, not just through TNF-RII. Although death mediated by TNF-RII is not as widely studied as that mediated by TNF-RI, we show here that it is also dependent on proteolytic cleavage by caspases and triggered by a brief initial encounter with antigen. These results suggest that determinant density can regulate the immune response by altering the sensitivity of CTLs to the apoptotic effects of TNF-α by decreasing Bcl-2 levels. |
---|