Cargando…

Receptor-Mediated Uptake of Antigen/Heat Shock Protein Complexes Results in Major Histocompatibility Complex Class I Antigen Presentation via Two Distinct Processing Pathways

Heat shock proteins (HSPs) derived from tumors or virally infected cells can stimulate antigen-specific CD8(+) T cell responses in vitro and in vivo. Although this antigenicity is known to arise from HSP-associated peptides presented to the immune system by major histocompatibility complex (MHC) cla...

Descripción completa

Detalles Bibliográficos
Autores principales: Castellino, Flora, Boucher, Philip E., Eichelberg, Katrin, Mayhew, Mark, Rothman, James E., Houghton, Alan N., Germain, Ronald N.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213527/
https://www.ncbi.nlm.nih.gov/pubmed/10839810
Descripción
Sumario:Heat shock proteins (HSPs) derived from tumors or virally infected cells can stimulate antigen-specific CD8(+) T cell responses in vitro and in vivo. Although this antigenicity is known to arise from HSP-associated peptides presented to the immune system by major histocompatibility complex (MHC) class I molecules, the cell biology underlying this presentation process remains poorly understood. Here we show that HSP 70 binds to the surface of antigen presenting cells by a mechanism with the characteristics of a saturable receptor system. After this membrane interaction, processing and MHC class I presentation of the HSP-associated antigen can occur via either a cytosolic (transporter associated with antigen processing [TAP] and proteasome–dependent) or an endosomal (TAP and proteasome–independent) route, with the preferred pathway determined by the sequence context of the optimal antigenic peptide within the HSP-associated material. These findings not only characterize two highly efficient, specific pathways leading to the conversion of HSP-associated antigens into ligands for CD8(+) T cells, they also imply the existence of a mechanism for receptor-facilitated transmembrane transport of HSP or HSP-associated ligands from the plasma membrane or lumen of endosomes into the cytosol.