Cargando…
Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA
Intense investigation has identified an elaborate protein network controlling epithelial polarity. Although precise subcellular targeting of apical and basolateral determinants is required for epithelial architecture, little is known about how the individual determinant proteins become localized wit...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213700/ https://www.ncbi.nlm.nih.gov/pubmed/18208331 http://dx.doi.org/10.1371/journal.pgen.0040008 |
_version_ | 1782148936073478144 |
---|---|
author | Horne-Badovinac, Sally Bilder, David |
author_facet | Horne-Badovinac, Sally Bilder, David |
author_sort | Horne-Badovinac, Sally |
collection | PubMed |
description | Intense investigation has identified an elaborate protein network controlling epithelial polarity. Although precise subcellular targeting of apical and basolateral determinants is required for epithelial architecture, little is known about how the individual determinant proteins become localized within the cell. Through a genetic screen for epithelial defects in the Drosophila follicle cells, we have found that the cytoplasmic Dynein motor is an essential regulator of apico–basal polarity. Our data suggest that Dynein acts through the cytoplasmic scaffolding protein Stardust (Sdt) to localize the transmembrane protein Crumbs, in part through the apical targeting of specific sdt mRNA isoforms. We have mapped the sdt mRNA localization signal to an alternatively spliced coding exon. Intriguingly, the presence or absence of this exon corresponds to a developmental switch in sdt mRNA localization in which apical transcripts are only found during early stages of epithelial development, while unlocalized transcripts predominate in mature epithelia. This work represents the first demonstration that Dynein is required for epithelial polarity and suggests that mRNA localization may have a functional role in the regulation of apico–basal organization. Moreover, we introduce a unique mechanism in which alternative splicing of a coding exon is used to control mRNA localization during development. |
format | Text |
id | pubmed-2213700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-22137002008-03-13 Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA Horne-Badovinac, Sally Bilder, David PLoS Genet Research Article Intense investigation has identified an elaborate protein network controlling epithelial polarity. Although precise subcellular targeting of apical and basolateral determinants is required for epithelial architecture, little is known about how the individual determinant proteins become localized within the cell. Through a genetic screen for epithelial defects in the Drosophila follicle cells, we have found that the cytoplasmic Dynein motor is an essential regulator of apico–basal polarity. Our data suggest that Dynein acts through the cytoplasmic scaffolding protein Stardust (Sdt) to localize the transmembrane protein Crumbs, in part through the apical targeting of specific sdt mRNA isoforms. We have mapped the sdt mRNA localization signal to an alternatively spliced coding exon. Intriguingly, the presence or absence of this exon corresponds to a developmental switch in sdt mRNA localization in which apical transcripts are only found during early stages of epithelial development, while unlocalized transcripts predominate in mature epithelia. This work represents the first demonstration that Dynein is required for epithelial polarity and suggests that mRNA localization may have a functional role in the regulation of apico–basal organization. Moreover, we introduce a unique mechanism in which alternative splicing of a coding exon is used to control mRNA localization during development. Public Library of Science 2008-01 2008-01-18 /pmc/articles/PMC2213700/ /pubmed/18208331 http://dx.doi.org/10.1371/journal.pgen.0040008 Text en © 2008 Horne-Badovinac and Bilder. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Horne-Badovinac, Sally Bilder, David Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA |
title | Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA |
title_full | Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA |
title_fullStr | Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA |
title_full_unstemmed | Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA |
title_short | Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA |
title_sort | dynein regulates epithelial polarity and the apical localization of stardust a mrna |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213700/ https://www.ncbi.nlm.nih.gov/pubmed/18208331 http://dx.doi.org/10.1371/journal.pgen.0040008 |
work_keys_str_mv | AT hornebadovinacsally dyneinregulatesepithelialpolarityandtheapicallocalizationofstardustamrna AT bilderdavid dyneinregulatesepithelialpolarityandtheapicallocalizationofstardustamrna |