Cargando…

Influence of Glucose on the Transmembrane Action Potential of Anoxic Papillary Muscle

The response of the cat papillary muscle to anoxia has been found to alter depending on the glucose concentration in the medium. At a glucose concentration of 5 mM anoxia caused a marked reduction in force of contraction and action potential duration within 20 minutes. At a glucose concentration of...

Descripción completa

Detalles Bibliográficos
Autores principales: MacLeod, Don P., Daniel, E. E.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1965
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213770/
https://www.ncbi.nlm.nih.gov/pubmed/14324994
Descripción
Sumario:The response of the cat papillary muscle to anoxia has been found to alter depending on the glucose concentration in the medium. At a glucose concentration of 5 mM anoxia caused a marked reduction in force of contraction and action potential duration within 20 minutes. At a glucose concentration of 50 mM anoxia induced similar changes in the force of contraction but little or no change in action potential duration. Elevation of glucose concentration during an anoxic interval reversed the anoxia-induced changes in action potential but had little effect on force of contraction. This effect of glucose could be partially duplicated by xylose and 2-deoxyglucose and in addition, 2-deoxyglucose has been found to prevent the effect of subsequently added glucose. These sugars appear to be transported by a system responsible for glucose transport but are not metabolized to any extent. It would appear therefore that transport of glucose is in some way related to transport of potassium as increased potassium permeability is thought by many to be responsible for anoxia-induced changes in action potential duration.