Cargando…
Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions
Recent data obtained from Rana temporaria sartorius muscles during an isometric tetanus indicate that the time-course of phosphocreatine (PC) splitting cannot account for the total energy (heat + work) liberation (Gilbert et al. 1971. J. Physiol. (Lond.) 218:)63). As this conclusion is important to...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1975
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2214860/ https://www.ncbi.nlm.nih.gov/pubmed/1078574 |
Sumario: | Recent data obtained from Rana temporaria sartorius muscles during an isometric tetanus indicate that the time-course of phosphocreatine (PC) splitting cannot account for the total energy (heat + work) liberation (Gilbert et al. 1971. J. Physiol. (Lond.) 218:)63). As this conclusion is important to an understanding of the chemical energetics of contraction, similar experments were performed on unpoisoned, oxygenated Rana pipiens sartorius muscles. The muscles were tetanized (isometrically) at 0 degrees C for 0.6, 1, or 5 s; metabolism was rapidly arrested by freezing the muscles with a specially designed hammer apparatus, and the frozen muscles were chemically analyzed. Comparable myothermal measurments were made on frogs from the same batch. Results of these experiments indicate: (a) The energy liberation parallels the PC and ATP breakdown with a proportionality constant of 10.7 kcal/mol; (b) comparably designed experiments with sartorius muscles of R. temporaria revealed that the ratio of energy liberation to PC splitting was significantly greater than that observed in R. pipiens sartorius muscles; (c) there is no systematic difference between experiments in which metabolism was arrested by the hammer apparatus and others using a conventional immersion technique. |
---|