Cargando…

Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers

When [Na] was suddenly introduced to single muscle fibers (Xenopus or frog), which had been pretreated with Na-free solution (Tris- substituted), the time-course of twitch recovery was very variable, half-time ranging from less than 1 S to 5 S. The [Na] vs. twitch height relationship was also variab...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1975
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2214928/
https://www.ncbi.nlm.nih.gov/pubmed/1080184
_version_ 1782148974922170368
collection PubMed
description When [Na] was suddenly introduced to single muscle fibers (Xenopus or frog), which had been pretreated with Na-free solution (Tris- substituted), the time-course of twitch recovery was very variable, half-time ranging from less than 1 S to 5 S. The [Na] vs. twitch height relationship was also variable. In small Xenopus fibers, decreases of [Na] to 50% increased the twitch, while in large Xenopus fibers twitch height remained constant or decreased as [Na] was decreased to 50%. The apparent diffusion constant (D') of Na+ or K+, calculated from the time- course of twitch recovery and the [Na] vs. twitch relation, and from the time-course of the slow repolarization upon sudden reduction of [K] was about 1-1.5 X 10(-6) cm2/S. This is one order of magnitude smaller than the diffusion constants in an aqueous solution. Even if the tortuosity factor of the T system is taken into account, there remains a substantial discrepancy. Although our value of D' is subject to various errors, if we accept the value, the twitch recovery is predicted to be either very quick or slow depending upon the variation of [Na]-twitch relation and fiber size. Thus, both quick and slow twitch recoveries can be explained by the diffusion time of Na+ in the T system, and therefore the results are consistent with the idea that the T system is excitable.
format Text
id pubmed-2214928
institution National Center for Biotechnology Information
language English
publishDate 1975
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22149282008-04-23 Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers J Gen Physiol Articles When [Na] was suddenly introduced to single muscle fibers (Xenopus or frog), which had been pretreated with Na-free solution (Tris- substituted), the time-course of twitch recovery was very variable, half-time ranging from less than 1 S to 5 S. The [Na] vs. twitch height relationship was also variable. In small Xenopus fibers, decreases of [Na] to 50% increased the twitch, while in large Xenopus fibers twitch height remained constant or decreased as [Na] was decreased to 50%. The apparent diffusion constant (D') of Na+ or K+, calculated from the time- course of twitch recovery and the [Na] vs. twitch relation, and from the time-course of the slow repolarization upon sudden reduction of [K] was about 1-1.5 X 10(-6) cm2/S. This is one order of magnitude smaller than the diffusion constants in an aqueous solution. Even if the tortuosity factor of the T system is taken into account, there remains a substantial discrepancy. Although our value of D' is subject to various errors, if we accept the value, the twitch recovery is predicted to be either very quick or slow depending upon the variation of [Na]-twitch relation and fiber size. Thus, both quick and slow twitch recoveries can be explained by the diffusion time of Na+ in the T system, and therefore the results are consistent with the idea that the T system is excitable. The Rockefeller University Press 1975-04-01 /pmc/articles/PMC2214928/ /pubmed/1080184 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers
title Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers
title_full Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers
title_fullStr Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers
title_full_unstemmed Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers
title_short Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers
title_sort effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2214928/
https://www.ncbi.nlm.nih.gov/pubmed/1080184