Cargando…
Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents
Exposure to N-ethylmaleimide (NEM), a reagent that binds covalently to protein sulfhydryl groups, results in a specific reduction in sodium conductance in crayfish axons. Resting potential, the delayed rise in potassium conductance, and the selectivity of the sodium channel are unaffected. Sodium cu...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1977
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215015/ https://www.ncbi.nlm.nih.gov/pubmed/839196 |
_version_ | 1782148984275468288 |
---|---|
collection | PubMed |
description | Exposure to N-ethylmaleimide (NEM), a reagent that binds covalently to protein sulfhydryl groups, results in a specific reduction in sodium conductance in crayfish axons. Resting potential, the delayed rise in potassium conductance, and the selectivity of the sodium channel are unaffected. Sodium currents are only slightly increased by hyperpolarizing prepulses of up to 50 ms duration, but can be restored to about 70% of their value before treatment if this duration is increased to 300-800 ms. The time to peak sodium current and the time constant of decay of sodium tail currents are unaffected by NEM, suggesting that the sodium activation system remains unaltered. Kinetic studies suggest that NEM reacts with a "slow" sodium inactivation system that is present in normal axons and that may be seen after depolarization produced by lowered the holding potential or increasing the external potassium concentration. NEM also perturbs the fast h inactivation system, and in a potential-dependent manner. At small depolarizations tauh is decreased, while at strong depolarizations it is increased over control values. Experiments with structural analogs of NEM suggest that sulfhydryl block is involved, but do not rule out an action similar to that of local anesthetics, p- Chloromercuriphenylsulfonic acid (PCMBS), another reagent with high specificity for SH groups, also blocks sodium currents, but restoration with prolonged hyperpolarizations is not possible. |
format | Text |
id | pubmed-2215015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1977 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22150152008-04-23 Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents J Gen Physiol Articles Exposure to N-ethylmaleimide (NEM), a reagent that binds covalently to protein sulfhydryl groups, results in a specific reduction in sodium conductance in crayfish axons. Resting potential, the delayed rise in potassium conductance, and the selectivity of the sodium channel are unaffected. Sodium currents are only slightly increased by hyperpolarizing prepulses of up to 50 ms duration, but can be restored to about 70% of their value before treatment if this duration is increased to 300-800 ms. The time to peak sodium current and the time constant of decay of sodium tail currents are unaffected by NEM, suggesting that the sodium activation system remains unaltered. Kinetic studies suggest that NEM reacts with a "slow" sodium inactivation system that is present in normal axons and that may be seen after depolarization produced by lowered the holding potential or increasing the external potassium concentration. NEM also perturbs the fast h inactivation system, and in a potential-dependent manner. At small depolarizations tauh is decreased, while at strong depolarizations it is increased over control values. Experiments with structural analogs of NEM suggest that sulfhydryl block is involved, but do not rule out an action similar to that of local anesthetics, p- Chloromercuriphenylsulfonic acid (PCMBS), another reagent with high specificity for SH groups, also blocks sodium currents, but restoration with prolonged hyperpolarizations is not possible. The Rockefeller University Press 1977-02-01 /pmc/articles/PMC2215015/ /pubmed/839196 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents |
title | Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents |
title_full | Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents |
title_fullStr | Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents |
title_full_unstemmed | Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents |
title_short | Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents |
title_sort | slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215015/ https://www.ncbi.nlm.nih.gov/pubmed/839196 |