Cargando…

Characteristics of the chloride conductance in muscle fibers of the rat diaphragm

In muscle fibers from the rat diaphragm, 85% of the resting membrane ion conductance is attributable to Cl-. At 37 degree C and pH 7.0, GCl averages 2.11 mmho/cm2 while residual conductance largely due to K+ averages 0.34 mmho/cm2. The resting GCl exhibits a biphasic temperature dependence with a Q1...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1977
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215020/
https://www.ncbi.nlm.nih.gov/pubmed/15046
_version_ 1782148985463504896
collection PubMed
description In muscle fibers from the rat diaphragm, 85% of the resting membrane ion conductance is attributable to Cl-. At 37 degree C and pH 7.0, GCl averages 2.11 mmho/cm2 while residual conductance largely due to K+ averages 0.34 mmho/cm2. The resting GCl exhibits a biphasic temperature dependence with a Q10 of 1.6 between 6 degree C and 25 degree C and a Q10 of nearly 1 between 25 degree C and 40 degree C. Decreasing external pH reversibly reduced GCl; the apparent pK for groups mediating this decrease is 5.5. Increasing pH up to 10.0 had no effect on GCl. Anion conductance sequence and permeability sequence were both determined to be Cl-greater than Br-greater than or equal to I-greater than CH3SO4-. Lowering the pH below 5.5 reduced the magnitude of the measured conductance to all anions but did not alter the conductance sequence. The permeability sequence was likewise unchanged at low pH. Experiments with varying molar ratios of Cl- and I- indicated a marked interaction between these ions in their transmembrane movement. Similar but less striking interaction was seen between Cl- and Br-. Current- voltage relationships for GCl measured at early time-points in the presence of Rb+ were linear, but showed marked rectification with longer hyperpolarizing pulses (greater than 50ms) due to a slow time- and voltage-dependent change in membrane conductance to Cl-. This nonlinear behavior appeared to depend on the concentration of Cl- present but cannot be attributed to tubular ion accumulation. Tubular disruption with glycerol lowers apparent GCl but not GK, suggesting that the transverse tubule (T-tubule) system is permeable to Cl- in this species. Quantitative estimates indicate that up to 80% of GCl may be associated with the T tubules.
format Text
id pubmed-2215020
institution National Center for Biotechnology Information
language English
publishDate 1977
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22150202008-04-23 Characteristics of the chloride conductance in muscle fibers of the rat diaphragm J Gen Physiol Articles In muscle fibers from the rat diaphragm, 85% of the resting membrane ion conductance is attributable to Cl-. At 37 degree C and pH 7.0, GCl averages 2.11 mmho/cm2 while residual conductance largely due to K+ averages 0.34 mmho/cm2. The resting GCl exhibits a biphasic temperature dependence with a Q10 of 1.6 between 6 degree C and 25 degree C and a Q10 of nearly 1 between 25 degree C and 40 degree C. Decreasing external pH reversibly reduced GCl; the apparent pK for groups mediating this decrease is 5.5. Increasing pH up to 10.0 had no effect on GCl. Anion conductance sequence and permeability sequence were both determined to be Cl-greater than Br-greater than or equal to I-greater than CH3SO4-. Lowering the pH below 5.5 reduced the magnitude of the measured conductance to all anions but did not alter the conductance sequence. The permeability sequence was likewise unchanged at low pH. Experiments with varying molar ratios of Cl- and I- indicated a marked interaction between these ions in their transmembrane movement. Similar but less striking interaction was seen between Cl- and Br-. Current- voltage relationships for GCl measured at early time-points in the presence of Rb+ were linear, but showed marked rectification with longer hyperpolarizing pulses (greater than 50ms) due to a slow time- and voltage-dependent change in membrane conductance to Cl-. This nonlinear behavior appeared to depend on the concentration of Cl- present but cannot be attributed to tubular ion accumulation. Tubular disruption with glycerol lowers apparent GCl but not GK, suggesting that the transverse tubule (T-tubule) system is permeable to Cl- in this species. Quantitative estimates indicate that up to 80% of GCl may be associated with the T tubules. The Rockefeller University Press 1977-03-01 /pmc/articles/PMC2215020/ /pubmed/15046 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Characteristics of the chloride conductance in muscle fibers of the rat diaphragm
title Characteristics of the chloride conductance in muscle fibers of the rat diaphragm
title_full Characteristics of the chloride conductance in muscle fibers of the rat diaphragm
title_fullStr Characteristics of the chloride conductance in muscle fibers of the rat diaphragm
title_full_unstemmed Characteristics of the chloride conductance in muscle fibers of the rat diaphragm
title_short Characteristics of the chloride conductance in muscle fibers of the rat diaphragm
title_sort characteristics of the chloride conductance in muscle fibers of the rat diaphragm
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215020/
https://www.ncbi.nlm.nih.gov/pubmed/15046