Cargando…

Properties of internally perfused, voltage-clamped, isolated nerve cell bodies

The membrane properties of isolated neurons from Helix aspersa were examined by using a new suction pipette method. The method combines internal perfusion with voltage clamp of nerve cell bodies separated from their axons. Pretreatment with enzymes such as trypsin that alter membrane function is not...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215103/
https://www.ncbi.nlm.nih.gov/pubmed/660159
_version_ 1782148992581238784
collection PubMed
description The membrane properties of isolated neurons from Helix aspersa were examined by using a new suction pipette method. The method combines internal perfusion with voltage clamp of nerve cell bodies separated from their axons. Pretreatment with enzymes such as trypsin that alter membrane function is not required. A platinized platinum wire which ruptures the soma membrane allows low resistance access directly to the cell's interior improving the time resolution under voltage clamp by two orders of magnitude. The shunt resistance of the suction pipette was 10-50 times the neuronal membrane resistance, and the series resistance of the system, which was largely due to the tip diameter, was about 10(5) omega. However, the peak clamp currents were only about 20 nA for a 60-mV voltage step so that measurements of membrane voltage were accurate to within at least 3%. Spatial control of voltage was achieved only after somal separation, and nerve cell bodies isolated in this way do not generate all-or-none action potentials. Measurements of membrane potential, membrane resistance, and membrane time constant are equivalent to those obtained using intracellular micropipettes, the customary method. With the axon attached, comparable all-or-none action potentials were also measured by either method. Complete exchange of Cs+ for K+ was accomplished by internal perfusion and allowed K+ currents to be blocked. Na+ currents could then be blocked by TTX or suppressed by Tris-substituted snail Ringer solution. Ca2+ currents could be blocked using Ni2+ and other divalent cations as well as organic Ca2+ blockers. The most favorable intracellular anion was aspartate-, and the sequence of favorability was inverted from that found in squid axon.
format Text
id pubmed-2215103
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22151032008-04-23 Properties of internally perfused, voltage-clamped, isolated nerve cell bodies J Gen Physiol Articles The membrane properties of isolated neurons from Helix aspersa were examined by using a new suction pipette method. The method combines internal perfusion with voltage clamp of nerve cell bodies separated from their axons. Pretreatment with enzymes such as trypsin that alter membrane function is not required. A platinized platinum wire which ruptures the soma membrane allows low resistance access directly to the cell's interior improving the time resolution under voltage clamp by two orders of magnitude. The shunt resistance of the suction pipette was 10-50 times the neuronal membrane resistance, and the series resistance of the system, which was largely due to the tip diameter, was about 10(5) omega. However, the peak clamp currents were only about 20 nA for a 60-mV voltage step so that measurements of membrane voltage were accurate to within at least 3%. Spatial control of voltage was achieved only after somal separation, and nerve cell bodies isolated in this way do not generate all-or-none action potentials. Measurements of membrane potential, membrane resistance, and membrane time constant are equivalent to those obtained using intracellular micropipettes, the customary method. With the axon attached, comparable all-or-none action potentials were also measured by either method. Complete exchange of Cs+ for K+ was accomplished by internal perfusion and allowed K+ currents to be blocked. Na+ currents could then be blocked by TTX or suppressed by Tris-substituted snail Ringer solution. Ca2+ currents could be blocked using Ni2+ and other divalent cations as well as organic Ca2+ blockers. The most favorable intracellular anion was aspartate-, and the sequence of favorability was inverted from that found in squid axon. The Rockefeller University Press 1978-05-01 /pmc/articles/PMC2215103/ /pubmed/660159 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Properties of internally perfused, voltage-clamped, isolated nerve cell bodies
title Properties of internally perfused, voltage-clamped, isolated nerve cell bodies
title_full Properties of internally perfused, voltage-clamped, isolated nerve cell bodies
title_fullStr Properties of internally perfused, voltage-clamped, isolated nerve cell bodies
title_full_unstemmed Properties of internally perfused, voltage-clamped, isolated nerve cell bodies
title_short Properties of internally perfused, voltage-clamped, isolated nerve cell bodies
title_sort properties of internally perfused, voltage-clamped, isolated nerve cell bodies
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215103/
https://www.ncbi.nlm.nih.gov/pubmed/660159