Cargando…

Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers

Submaximum and maximum forces of the cardiac muscle contractile apparatus, activated by Ca2+ or Sr2+, were determined as a function of Mg2+ concentration. Apical left ventricular tissue from Sprague-Dawley rats was broken by homogenization into small bundles of fibers with disrupted sarcolemmas (ski...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215115/
https://www.ncbi.nlm.nih.gov/pubmed/97362
_version_ 1782148995538223104
collection PubMed
description Submaximum and maximum forces of the cardiac muscle contractile apparatus, activated by Ca2+ or Sr2+, were determined as a function of Mg2+ concentration. Apical left ventricular tissue from Sprague-Dawley rats was broken by homogenization into small bundles of fibers with disrupted sarcolemmas (skinned). Tension generation was activated by and graded according to the concentration of Ca2+ or Sr2+ in solutions bathing the skinned fibers and measured with a photodiode force transducer. Steady-state tensions for various levels of activation at each of four concentrations of Mg2+ (5 x 10(-5), 1 x 10(-3), 5 x 10(- 3), and 10 x 10(-3) M) in the bathing solutions were analyzed. Other bathing solution constituents and parameters mimicked significant normal intracellular conditions while providing adequate buffering of [H+], [Ca2+], and [MgATP2-] (magnesium adenosine triphosphate). To assess changes in sensitivity of the mechanical system to activation by Ca2+ (or Sr2+), each submaximum tension was expressed as a percentage of the given fiber bundle's maximum force generated at saturating [Ca2+] (or [Sr2+]) at the same [Mg2+]. When plotted as saturation curves these data demonstrate that increasing [Mg2+] depresses Ca2+ sensitivity of the force-generating mechanism. The Ca2+ and Sr2+ sensitivity of the cardiac force-generating apparatus is similar at every [Mg2+], indicating that the magnitude of Mg2+ effect is similar for both types of activation. However, absolute maximum tensions at saturating activating cation concentration increased as [Mg2+] increased; the effect of Mg2+ on maximum force was proportionately the same for Ca2+ and Sr2+ activation. But because saturating [Ca2+] always resulted in a lower maximum force than saturating [Sr2+], this site of Ca2+-Mg2+ interaction appears distinct from the one influencing Ca2+ sensitivity.
format Text
id pubmed-2215115
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22151152008-04-23 Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers J Gen Physiol Articles Submaximum and maximum forces of the cardiac muscle contractile apparatus, activated by Ca2+ or Sr2+, were determined as a function of Mg2+ concentration. Apical left ventricular tissue from Sprague-Dawley rats was broken by homogenization into small bundles of fibers with disrupted sarcolemmas (skinned). Tension generation was activated by and graded according to the concentration of Ca2+ or Sr2+ in solutions bathing the skinned fibers and measured with a photodiode force transducer. Steady-state tensions for various levels of activation at each of four concentrations of Mg2+ (5 x 10(-5), 1 x 10(-3), 5 x 10(- 3), and 10 x 10(-3) M) in the bathing solutions were analyzed. Other bathing solution constituents and parameters mimicked significant normal intracellular conditions while providing adequate buffering of [H+], [Ca2+], and [MgATP2-] (magnesium adenosine triphosphate). To assess changes in sensitivity of the mechanical system to activation by Ca2+ (or Sr2+), each submaximum tension was expressed as a percentage of the given fiber bundle's maximum force generated at saturating [Ca2+] (or [Sr2+]) at the same [Mg2+]. When plotted as saturation curves these data demonstrate that increasing [Mg2+] depresses Ca2+ sensitivity of the force-generating mechanism. The Ca2+ and Sr2+ sensitivity of the cardiac force-generating apparatus is similar at every [Mg2+], indicating that the magnitude of Mg2+ effect is similar for both types of activation. However, absolute maximum tensions at saturating activating cation concentration increased as [Mg2+] increased; the effect of Mg2+ on maximum force was proportionately the same for Ca2+ and Sr2+ activation. But because saturating [Ca2+] always resulted in a lower maximum force than saturating [Sr2+], this site of Ca2+-Mg2+ interaction appears distinct from the one influencing Ca2+ sensitivity. The Rockefeller University Press 1978-06-01 /pmc/articles/PMC2215115/ /pubmed/97362 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers
title Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers
title_full Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers
title_fullStr Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers
title_full_unstemmed Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers
title_short Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers
title_sort characterization of the effects of mg2+ on ca2+- and sr2+-activated tension generation of skinned rat cardiac fibers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215115/
https://www.ncbi.nlm.nih.gov/pubmed/97362