Cargando…
The gecko visual pigments. The behavior of opsin
The 521-pigment extracted out of the retina of the Tokay gecko has the typical stereospecificity of the vertebrate visual pigments. This is true for the pigment in the chloride-depleted, "blue-shifted" state as well as for the normal pigment with added chloride. While in the chloride-defic...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1979
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215191/ https://www.ncbi.nlm.nih.gov/pubmed/458419 |
Sumario: | The 521-pigment extracted out of the retina of the Tokay gecko has the typical stereospecificity of the vertebrate visual pigments. This is true for the pigment in the chloride-depleted, "blue-shifted" state as well as for the normal pigment with added chloride. While in the chloride-deficient state, pigment regeneration occurred with both 11- cis- and 9-cis-retinals and the regenerated photopigments were also in the blue-shifted, chloride-depleted state. As with the native pigment, these regenerated pigments were bathochromically shifted to their normal positions by the addition of chloride. Chloride-deficient opsin by itself also responded to chloride for the pigment regenerated with 11-cis-retinal from such chloride-treated opsin was in the normal 521- position. Regeneration was always rapid, reaching completion in less than 5 min, and was significantly faster than for cow rhodopsin regenerating under the same conditions. This rapid rate was found with or without chloride, with both 11-cis- and 9-cis-retinals and in the presence of the sulfhydryl poison, p-hydroxymercuribenzoate (PMB). Like the native chloride-deficient pigment, the regenerated chloride- depleted photopigments responded to PMB by a blue shift beyond the position of the chloride-deficient state. The addition of chloride to these "poisoned" regenerated pigments caused a bathochromic shift of such magnitude as to indicate a repair of both the PMB and chloride- deficient blue shift. In this discussion the possible implications of these results to phylogenetic considerations are considered as well as to some molecular properties of the 521-pigment. |
---|