Cargando…
Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation
Electrical stimulation of the chick ciliary nerve leads to a frequency- dependent increase in the Na+-dependent high affinity uptake of [3H]choline (SDHACU) and its conversion to acetylcholine (ACh) in the nerve terminals innervating the iris muscle. The forces that drive this choline (Ch) uptake ac...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1979
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215194/ https://www.ncbi.nlm.nih.gov/pubmed/222876 |
_version_ | 1782149001697558528 |
---|---|
collection | PubMed |
description | Electrical stimulation of the chick ciliary nerve leads to a frequency- dependent increase in the Na+-dependent high affinity uptake of [3H]choline (SDHACU) and its conversion to acetylcholine (ACh) in the nerve terminals innervating the iris muscle. The forces that drive this choline (Ch) uptake across the presynaptic membrane were evaluated. Depolarization with increased [K+] out or veratridine decreases Ch accumulation. In addition to the electrical driving force, energy is provided by the Na+ gradient. Inhibition of the Na,K-ATPase decreased the Ch taken up. Thus, changes in the rate of Ch transport are dependent on the electrochemical gradients for both Ch and Na+. Ch uptake and ACh synthesis were increased after a conditioning preincubation with high [K+] out or veratridine. As is the case for electrical stimulation, this acceleration of Ch uptake and ACh synthesis was strongly dependent on the presence of Ca++ in the incubation medium. Na+ influx through a TTX-sensitive channel also contributed to this acceleration. Inasmuch as membrane depolarization reduces the initial velocity of Ch uptake and ACh synthesis, their increases during electrical stimulation therefore cannot be the direct effect of the depolarization phase of the action potential. Instead they are the result of the ionic fluxes accompanying the presynaptic spike. It is concluded that stimulation of Ch uptake and ACh synthesis by nerve activity depends first, on the ACh release elicited by Ca++ influx after depolarization and second, on the activation of the Na,K- ATPase due to Na+ entry. Furthermore, it is suggested that the release of ACh after stimulation drives translocation of cytoplasmic ACh into a protected compartment (probably vesicular). This recompartmentation of intraterminal ACh stimulates ACh synthesis by mass action, allowing further accumulation of Ch. |
format | Text |
id | pubmed-2215194 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1979 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22151942008-04-23 Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation J Gen Physiol Articles Electrical stimulation of the chick ciliary nerve leads to a frequency- dependent increase in the Na+-dependent high affinity uptake of [3H]choline (SDHACU) and its conversion to acetylcholine (ACh) in the nerve terminals innervating the iris muscle. The forces that drive this choline (Ch) uptake across the presynaptic membrane were evaluated. Depolarization with increased [K+] out or veratridine decreases Ch accumulation. In addition to the electrical driving force, energy is provided by the Na+ gradient. Inhibition of the Na,K-ATPase decreased the Ch taken up. Thus, changes in the rate of Ch transport are dependent on the electrochemical gradients for both Ch and Na+. Ch uptake and ACh synthesis were increased after a conditioning preincubation with high [K+] out or veratridine. As is the case for electrical stimulation, this acceleration of Ch uptake and ACh synthesis was strongly dependent on the presence of Ca++ in the incubation medium. Na+ influx through a TTX-sensitive channel also contributed to this acceleration. Inasmuch as membrane depolarization reduces the initial velocity of Ch uptake and ACh synthesis, their increases during electrical stimulation therefore cannot be the direct effect of the depolarization phase of the action potential. Instead they are the result of the ionic fluxes accompanying the presynaptic spike. It is concluded that stimulation of Ch uptake and ACh synthesis by nerve activity depends first, on the ACh release elicited by Ca++ influx after depolarization and second, on the activation of the Na,K- ATPase due to Na+ entry. Furthermore, it is suggested that the release of ACh after stimulation drives translocation of cytoplasmic ACh into a protected compartment (probably vesicular). This recompartmentation of intraterminal ACh stimulates ACh synthesis by mass action, allowing further accumulation of Ch. The Rockefeller University Press 1979-05-01 /pmc/articles/PMC2215194/ /pubmed/222876 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation |
title | Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation |
title_full | Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation |
title_fullStr | Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation |
title_full_unstemmed | Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation |
title_short | Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation |
title_sort | mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215194/ https://www.ncbi.nlm.nih.gov/pubmed/222876 |