Cargando…

The ionic basis of oscillatory responses of skate electroreceptors

When physiological conditions are simulated, skate electroreceptors produce small maintained oscillatory currents. Larger damped oscillations of similar time-course are observed in voltage clamp. Subtraction of leakage in voltage clamp data shows that the oscillations involve no net outward current...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215204/
https://www.ncbi.nlm.nih.gov/pubmed/479811
_version_ 1782149002421075968
collection PubMed
description When physiological conditions are simulated, skate electroreceptors produce small maintained oscillatory currents. Larger damped oscillations of similar time-course are observed in voltage clamp. Subtraction of leakage in voltage clamp data shows that the oscillations involve no net outward current across the lumenal surface of the epithelium. The oscillations are much faster than the late outward current generated by the lumenal membranes of the receptor cells. Treatment of the basal surface of the epithelium with tetraethyl ammonium (TEA), high K, Co, or EGTA reversibly blocks the oscillations in voltage clamp, but has little or no effect on the epithelial action potential in current clamp or on the current-voltage relation. The TEA sensitivity of the oscillations indicates that they involve a potassium conductance in the basal membranes of the receptor cells. Treatment of the basal membranes with TEA and high calcium, with strontium, or with barium causes these membranes to produce large regenerative responses. Direct stimulation of the basal membranes then elicits a lumen-positive action potential whereas stimulation of the lumenal membranes elicits a diphasic action potential. Excitability of the basal membranes is abolished by extracellular Co, Mn, or La. Modulation of the lumenal membrane calcium conductance by the basal membrane conductances probably gives rise to the oscillatory receptor currents evoked by small voltage stimuli. The slower calcium-activated late conductance in the lumenal membranes may be involved in sensory accommodation.
format Text
id pubmed-2215204
institution National Center for Biotechnology Information
language English
publishDate 1979
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22152042008-04-23 The ionic basis of oscillatory responses of skate electroreceptors J Gen Physiol Articles When physiological conditions are simulated, skate electroreceptors produce small maintained oscillatory currents. Larger damped oscillations of similar time-course are observed in voltage clamp. Subtraction of leakage in voltage clamp data shows that the oscillations involve no net outward current across the lumenal surface of the epithelium. The oscillations are much faster than the late outward current generated by the lumenal membranes of the receptor cells. Treatment of the basal surface of the epithelium with tetraethyl ammonium (TEA), high K, Co, or EGTA reversibly blocks the oscillations in voltage clamp, but has little or no effect on the epithelial action potential in current clamp or on the current-voltage relation. The TEA sensitivity of the oscillations indicates that they involve a potassium conductance in the basal membranes of the receptor cells. Treatment of the basal membranes with TEA and high calcium, with strontium, or with barium causes these membranes to produce large regenerative responses. Direct stimulation of the basal membranes then elicits a lumen-positive action potential whereas stimulation of the lumenal membranes elicits a diphasic action potential. Excitability of the basal membranes is abolished by extracellular Co, Mn, or La. Modulation of the lumenal membrane calcium conductance by the basal membrane conductances probably gives rise to the oscillatory receptor currents evoked by small voltage stimuli. The slower calcium-activated late conductance in the lumenal membranes may be involved in sensory accommodation. The Rockefeller University Press 1979-06-01 /pmc/articles/PMC2215204/ /pubmed/479811 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The ionic basis of oscillatory responses of skate electroreceptors
title The ionic basis of oscillatory responses of skate electroreceptors
title_full The ionic basis of oscillatory responses of skate electroreceptors
title_fullStr The ionic basis of oscillatory responses of skate electroreceptors
title_full_unstemmed The ionic basis of oscillatory responses of skate electroreceptors
title_short The ionic basis of oscillatory responses of skate electroreceptors
title_sort ionic basis of oscillatory responses of skate electroreceptors
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215204/
https://www.ncbi.nlm.nih.gov/pubmed/479811