Cargando…

Electrogenic sodium extrusion in cardiac Purkinje fibers

Thin canine cardiac Purkinje fibers in a fast flow chamber were exposed to K-free fluid for 15 s to 6 min to initiate "sodium loading," then returned to K-containing fluid to stimulate the sodium pump. The electrophysiological effects of enhanced pump activity may result from extracellular...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215207/
https://www.ncbi.nlm.nih.gov/pubmed/479817
_version_ 1782149003139350528
collection PubMed
description Thin canine cardiac Purkinje fibers in a fast flow chamber were exposed to K-free fluid for 15 s to 6 min to initiate "sodium loading," then returned to K-containing fluid to stimulate the sodium pump. The electrophysiological effects of enhanced pump activity may result from extracellular K depletion caused by enhanced cellular uptake of K or from an increase in the current generated as a result of unequal pumped movements of Na and K, or from both. The effects of pump stimulation were therefore studied under three conditions in which lowering the external K concentration ([K]0) causes changes opposite to those expected from an increase in pump current. First, the resting potential of Purkinje fibers may have either a "high" value of a "low" (less negative) value: at the low level of potential, experimental reduction of [K]0 causes depolarization, whereas an increase in pump current should cause hyperpolarization. Second, in regularly stimulated Purkinje fibers, lowering [K]0 prolongs the action potential, whereas an increase in outward pump current should shorten it. Finally, lowering [K]0 enhances spontaneous "pacemaker" activity in Purkinje fibers, whereas an increase in outward pump current should reduce or abolish spontaneous activity. Under all three conditions, we find that the effects of temporary stimulation of the sodium pump are those expected from a transient increase in outward pump current, not those expected from K depletion.
format Text
id pubmed-2215207
institution National Center for Biotechnology Information
language English
publishDate 1979
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22152072008-04-23 Electrogenic sodium extrusion in cardiac Purkinje fibers J Gen Physiol Articles Thin canine cardiac Purkinje fibers in a fast flow chamber were exposed to K-free fluid for 15 s to 6 min to initiate "sodium loading," then returned to K-containing fluid to stimulate the sodium pump. The electrophysiological effects of enhanced pump activity may result from extracellular K depletion caused by enhanced cellular uptake of K or from an increase in the current generated as a result of unequal pumped movements of Na and K, or from both. The effects of pump stimulation were therefore studied under three conditions in which lowering the external K concentration ([K]0) causes changes opposite to those expected from an increase in pump current. First, the resting potential of Purkinje fibers may have either a "high" value of a "low" (less negative) value: at the low level of potential, experimental reduction of [K]0 causes depolarization, whereas an increase in pump current should cause hyperpolarization. Second, in regularly stimulated Purkinje fibers, lowering [K]0 prolongs the action potential, whereas an increase in outward pump current should shorten it. Finally, lowering [K]0 enhances spontaneous "pacemaker" activity in Purkinje fibers, whereas an increase in outward pump current should reduce or abolish spontaneous activity. Under all three conditions, we find that the effects of temporary stimulation of the sodium pump are those expected from a transient increase in outward pump current, not those expected from K depletion. The Rockefeller University Press 1979-06-01 /pmc/articles/PMC2215207/ /pubmed/479817 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Electrogenic sodium extrusion in cardiac Purkinje fibers
title Electrogenic sodium extrusion in cardiac Purkinje fibers
title_full Electrogenic sodium extrusion in cardiac Purkinje fibers
title_fullStr Electrogenic sodium extrusion in cardiac Purkinje fibers
title_full_unstemmed Electrogenic sodium extrusion in cardiac Purkinje fibers
title_short Electrogenic sodium extrusion in cardiac Purkinje fibers
title_sort electrogenic sodium extrusion in cardiac purkinje fibers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215207/
https://www.ncbi.nlm.nih.gov/pubmed/479817