Cargando…

Reversibility and mode of action of Black Widow spider venom on the vertebrate neuromuscular junction

Black widow spider venom (BWSV) stimulates transmitter release and depletes synaptic vesicles from muscles bathed in a sodium free medium containing 1 mM EGTA. However, frog neuromuscular junctions treated with BWSV in glucosamine Ringer's and post-treated with antivenin recover normal function...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215236/
https://www.ncbi.nlm.nih.gov/pubmed/312313
_version_ 1782149005696827392
collection PubMed
description Black widow spider venom (BWSV) stimulates transmitter release and depletes synaptic vesicles from muscles bathed in a sodium free medium containing 1 mM EGTA. However, frog neuromuscular junctions treated with BWSV in glucosamine Ringer's and post-treated with antivenin recover normal function. This suggests that probably the permanent block of neuromuscular transmission is due to changes in permeability of the nerve ending plasma membrane to cations such as Na+. When BWSV is applied in a medium lacking divalent cations and containing 1 mM EGTA, in most of the cases no effect is observed. We found that this inhibition can be overcome in three ways: (a) by adding divalent cations to the medium; (b) by increasing the tonicity of the medium with sucrose; (c) by raising the temperature of the medium. These results suggest that the lack of divalent cations influences the membrane fluidity. Moreover, in view of the report by Yahara and Kakimoto-Sameshima (1977. Proc. Natl. Acad. Sci. U.S.A. 74:4511--4515) that hypertonic media induce capping of surface receptors in lymphocytes and thymocytes, we think that these data further support the hypothesis that BWSV stimulates release by a dual mode of action; namely, it increases the nerve ending permeability to cations and also stimulates release directly via a process of redistribution of membrane components, a process which may also inhibit vesicle recycling.
format Text
id pubmed-2215236
institution National Center for Biotechnology Information
language English
publishDate 1979
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22152362008-04-23 Reversibility and mode of action of Black Widow spider venom on the vertebrate neuromuscular junction J Gen Physiol Articles Black widow spider venom (BWSV) stimulates transmitter release and depletes synaptic vesicles from muscles bathed in a sodium free medium containing 1 mM EGTA. However, frog neuromuscular junctions treated with BWSV in glucosamine Ringer's and post-treated with antivenin recover normal function. This suggests that probably the permanent block of neuromuscular transmission is due to changes in permeability of the nerve ending plasma membrane to cations such as Na+. When BWSV is applied in a medium lacking divalent cations and containing 1 mM EGTA, in most of the cases no effect is observed. We found that this inhibition can be overcome in three ways: (a) by adding divalent cations to the medium; (b) by increasing the tonicity of the medium with sucrose; (c) by raising the temperature of the medium. These results suggest that the lack of divalent cations influences the membrane fluidity. Moreover, in view of the report by Yahara and Kakimoto-Sameshima (1977. Proc. Natl. Acad. Sci. U.S.A. 74:4511--4515) that hypertonic media induce capping of surface receptors in lymphocytes and thymocytes, we think that these data further support the hypothesis that BWSV stimulates release by a dual mode of action; namely, it increases the nerve ending permeability to cations and also stimulates release directly via a process of redistribution of membrane components, a process which may also inhibit vesicle recycling. The Rockefeller University Press 1979-02-01 /pmc/articles/PMC2215236/ /pubmed/312313 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Reversibility and mode of action of Black Widow spider venom on the vertebrate neuromuscular junction
title Reversibility and mode of action of Black Widow spider venom on the vertebrate neuromuscular junction
title_full Reversibility and mode of action of Black Widow spider venom on the vertebrate neuromuscular junction
title_fullStr Reversibility and mode of action of Black Widow spider venom on the vertebrate neuromuscular junction
title_full_unstemmed Reversibility and mode of action of Black Widow spider venom on the vertebrate neuromuscular junction
title_short Reversibility and mode of action of Black Widow spider venom on the vertebrate neuromuscular junction
title_sort reversibility and mode of action of black widow spider venom on the vertebrate neuromuscular junction
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215236/
https://www.ncbi.nlm.nih.gov/pubmed/312313