Cargando…

The permeability of the endplate channel to organic cations in frog muscle

The relative permeability of endplate channels to many organic cations was determined by reversal-potential criteria. Endplate currents induced by iontophoretic "puffs" of acetylcholine were studied by a Vaseline gap, voltage clamp method in cut muscle fibers. Reversal potential changes we...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215262/
https://www.ncbi.nlm.nih.gov/pubmed/6247422
_version_ 1782149010231918592
collection PubMed
description The relative permeability of endplate channels to many organic cations was determined by reversal-potential criteria. Endplate currents induced by iontophoretic "puffs" of acetylcholine were studied by a Vaseline gap, voltage clamp method in cut muscle fibers. Reversal potential changes were measured as the NaCl of the bathing medium was replaced by salts of organic cations, and permeability ratios relative to Na+ ions were calculated from the Goldman-Hodgkin-Katz equation. 40 small monovalent organic cations had permeability ratios larger than 0.1. The most permeant including NH4+, hydroxylamine, hydrazine, methylamine, guanidine, and several relatives of guanidine had permeability ratios in the range 1.3--2.0. However, even cations such as imidazole, choline, tris(hydroxymethyl)aminomethane, triethylamine, and glycine methylester were appreciably permeant with permeability ratios of 0.13--0.95. Four compounds with two charged nitrogen groups were also permeant. Molecular models of the permeant ions suggest that the smallest cross-section of the open pore must be at least as large as a square, 6.5 A x 6.5 A. Specific chemical factors seem to be less important than access or friction in determining the ionic selectivity of the endplate channel.
format Text
id pubmed-2215262
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22152622008-04-23 The permeability of the endplate channel to organic cations in frog muscle J Gen Physiol Articles The relative permeability of endplate channels to many organic cations was determined by reversal-potential criteria. Endplate currents induced by iontophoretic "puffs" of acetylcholine were studied by a Vaseline gap, voltage clamp method in cut muscle fibers. Reversal potential changes were measured as the NaCl of the bathing medium was replaced by salts of organic cations, and permeability ratios relative to Na+ ions were calculated from the Goldman-Hodgkin-Katz equation. 40 small monovalent organic cations had permeability ratios larger than 0.1. The most permeant including NH4+, hydroxylamine, hydrazine, methylamine, guanidine, and several relatives of guanidine had permeability ratios in the range 1.3--2.0. However, even cations such as imidazole, choline, tris(hydroxymethyl)aminomethane, triethylamine, and glycine methylester were appreciably permeant with permeability ratios of 0.13--0.95. Four compounds with two charged nitrogen groups were also permeant. Molecular models of the permeant ions suggest that the smallest cross-section of the open pore must be at least as large as a square, 6.5 A x 6.5 A. Specific chemical factors seem to be less important than access or friction in determining the ionic selectivity of the endplate channel. The Rockefeller University Press 1980-05-01 /pmc/articles/PMC2215262/ /pubmed/6247422 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The permeability of the endplate channel to organic cations in frog muscle
title The permeability of the endplate channel to organic cations in frog muscle
title_full The permeability of the endplate channel to organic cations in frog muscle
title_fullStr The permeability of the endplate channel to organic cations in frog muscle
title_full_unstemmed The permeability of the endplate channel to organic cations in frog muscle
title_short The permeability of the endplate channel to organic cations in frog muscle
title_sort permeability of the endplate channel to organic cations in frog muscle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215262/
https://www.ncbi.nlm.nih.gov/pubmed/6247422