Cargando…

Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons

The magnitude of the activating effect of ATP on the Ca efflux was explored at different [Ca++]i in squid axons previously exposed to cyanide seawater and internally dialyzed with a medium free of ATP and containing p-trifluoro methoxy carbonyl cyanide phenyl hydrazine. At the lowest [Ca++]i used (0...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1977
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215340/
https://www.ncbi.nlm.nih.gov/pubmed/894243
_version_ 1782149015012376576
collection PubMed
description The magnitude of the activating effect of ATP on the Ca efflux was explored at different [Ca++]i in squid axons previously exposed to cyanide seawater and internally dialyzed with a medium free of ATP and containing p-trifluoro methoxy carbonyl cyanide phenyl hydrazine. At the lowest [Ca++]i used (0.06 micron more than 95% of the Ca efflux depends on ATP. At high [Ca++]i (100 micron), 50-60% of the Ca efflux still depends on ATP. The apparant affinity constant for ATP was not significantly affected in the range of [Ca++]i from 0.06 to 1 micron. Axons dialyzed to reduce their internal magnesium failed to show the usual activation of the Ca efflux when the Tris or the sodium salt of ATP was used. Only in the presence of internal magnesium is ATP able to stimulate the Ca efflux. Nine naturally occurring high-energy phosphate compounds were ineffective in supporting calcium efflux. These compounds were: UTP, GTP, CTP, UDP, CDP, ADP, AMP, CAMP, and acetyl phosphate. The compounds 2' deoxy-ATP and the hydrolyzable analog alpha,beta-methylene ATP were able to activate the Ca efflux. The nonhydrolyzable analog beta,gamma-methylene ATP competes with ATP for the activating site, but is unable to activate the Ca efflux. The results are discussed in terms of the specificity of the nucleotide site responsible for the ATP-dependent Ca efflux.
format Text
id pubmed-2215340
institution National Center for Biotechnology Information
language English
publishDate 1977
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22153402008-04-23 Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons J Gen Physiol Articles The magnitude of the activating effect of ATP on the Ca efflux was explored at different [Ca++]i in squid axons previously exposed to cyanide seawater and internally dialyzed with a medium free of ATP and containing p-trifluoro methoxy carbonyl cyanide phenyl hydrazine. At the lowest [Ca++]i used (0.06 micron more than 95% of the Ca efflux depends on ATP. At high [Ca++]i (100 micron), 50-60% of the Ca efflux still depends on ATP. The apparant affinity constant for ATP was not significantly affected in the range of [Ca++]i from 0.06 to 1 micron. Axons dialyzed to reduce their internal magnesium failed to show the usual activation of the Ca efflux when the Tris or the sodium salt of ATP was used. Only in the presence of internal magnesium is ATP able to stimulate the Ca efflux. Nine naturally occurring high-energy phosphate compounds were ineffective in supporting calcium efflux. These compounds were: UTP, GTP, CTP, UDP, CDP, ADP, AMP, CAMP, and acetyl phosphate. The compounds 2' deoxy-ATP and the hydrolyzable analog alpha,beta-methylene ATP were able to activate the Ca efflux. The nonhydrolyzable analog beta,gamma-methylene ATP competes with ATP for the activating site, but is unable to activate the Ca efflux. The results are discussed in terms of the specificity of the nucleotide site responsible for the ATP-dependent Ca efflux. The Rockefeller University Press 1977-06-01 /pmc/articles/PMC2215340/ /pubmed/894243 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons
title Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons
title_full Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons
title_fullStr Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons
title_full_unstemmed Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons
title_short Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons
title_sort characterization of the atp-dependent calcium efflux in dialyzed squid giant axons
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215340/
https://www.ncbi.nlm.nih.gov/pubmed/894243