Cargando…

Kinetic properties of a voltage-dependent junctional conductance

We have proposed that the gap junctions between amphibian blastomeres are comprised of voltage-sensitive channels. The kinetic properties of the junctional conductance are here studied under voltage clamp. When the transjunctional voltage is stepped to a new voltage of the same polarity, the junctio...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1981
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215411/
https://www.ncbi.nlm.nih.gov/pubmed/6259275
_version_ 1782149015885840384
collection PubMed
description We have proposed that the gap junctions between amphibian blastomeres are comprised of voltage-sensitive channels. The kinetic properties of the junctional conductance are here studied under voltage clamp. When the transjunctional voltage is stepped to a new voltage of the same polarity, the junctional conductance changes as a single exponential to a steady-state level. The time constant of the conductance change is determined by the existing transjunctional voltage and is independent of the previous voltage. For each voltage polarity, the relations between voltage, time constant, and steady-state conductance are well modeled by a reversible two-state reaction scheme in which the calculated rate constants for the transitions between the states are exponential functions of voltage. The calculated rate constant for the transition to the low-conductance state is approximately twice as voltage dependent as that for the transition to the high-conductance state. When the transjunctional voltage polarity is reversed, the junctional conductance undergoes a transient recovery. The polarity reversal data are well modeled by a reaction scheme in which the junctional channel has two gates, each with opposite voltage sensitivity, and in which an open gate may close only if the gate in series with it is open. A simple explanation for this contingent gating is a mechanism in which each gate senses only the local voltage drop within the channel.
format Text
id pubmed-2215411
institution National Center for Biotechnology Information
language English
publishDate 1981
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22154112008-04-23 Kinetic properties of a voltage-dependent junctional conductance J Gen Physiol Articles We have proposed that the gap junctions between amphibian blastomeres are comprised of voltage-sensitive channels. The kinetic properties of the junctional conductance are here studied under voltage clamp. When the transjunctional voltage is stepped to a new voltage of the same polarity, the junctional conductance changes as a single exponential to a steady-state level. The time constant of the conductance change is determined by the existing transjunctional voltage and is independent of the previous voltage. For each voltage polarity, the relations between voltage, time constant, and steady-state conductance are well modeled by a reversible two-state reaction scheme in which the calculated rate constants for the transitions between the states are exponential functions of voltage. The calculated rate constant for the transition to the low-conductance state is approximately twice as voltage dependent as that for the transition to the high-conductance state. When the transjunctional voltage polarity is reversed, the junctional conductance undergoes a transient recovery. The polarity reversal data are well modeled by a reaction scheme in which the junctional channel has two gates, each with opposite voltage sensitivity, and in which an open gate may close only if the gate in series with it is open. A simple explanation for this contingent gating is a mechanism in which each gate senses only the local voltage drop within the channel. The Rockefeller University Press 1981-01-01 /pmc/articles/PMC2215411/ /pubmed/6259275 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Kinetic properties of a voltage-dependent junctional conductance
title Kinetic properties of a voltage-dependent junctional conductance
title_full Kinetic properties of a voltage-dependent junctional conductance
title_fullStr Kinetic properties of a voltage-dependent junctional conductance
title_full_unstemmed Kinetic properties of a voltage-dependent junctional conductance
title_short Kinetic properties of a voltage-dependent junctional conductance
title_sort kinetic properties of a voltage-dependent junctional conductance
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215411/
https://www.ncbi.nlm.nih.gov/pubmed/6259275