Cargando…
Kinetic properties of a voltage-dependent junctional conductance
We have proposed that the gap junctions between amphibian blastomeres are comprised of voltage-sensitive channels. The kinetic properties of the junctional conductance are here studied under voltage clamp. When the transjunctional voltage is stepped to a new voltage of the same polarity, the junctio...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1981
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215411/ https://www.ncbi.nlm.nih.gov/pubmed/6259275 |
_version_ | 1782149015885840384 |
---|---|
collection | PubMed |
description | We have proposed that the gap junctions between amphibian blastomeres are comprised of voltage-sensitive channels. The kinetic properties of the junctional conductance are here studied under voltage clamp. When the transjunctional voltage is stepped to a new voltage of the same polarity, the junctional conductance changes as a single exponential to a steady-state level. The time constant of the conductance change is determined by the existing transjunctional voltage and is independent of the previous voltage. For each voltage polarity, the relations between voltage, time constant, and steady-state conductance are well modeled by a reversible two-state reaction scheme in which the calculated rate constants for the transitions between the states are exponential functions of voltage. The calculated rate constant for the transition to the low-conductance state is approximately twice as voltage dependent as that for the transition to the high-conductance state. When the transjunctional voltage polarity is reversed, the junctional conductance undergoes a transient recovery. The polarity reversal data are well modeled by a reaction scheme in which the junctional channel has two gates, each with opposite voltage sensitivity, and in which an open gate may close only if the gate in series with it is open. A simple explanation for this contingent gating is a mechanism in which each gate senses only the local voltage drop within the channel. |
format | Text |
id | pubmed-2215411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1981 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22154112008-04-23 Kinetic properties of a voltage-dependent junctional conductance J Gen Physiol Articles We have proposed that the gap junctions between amphibian blastomeres are comprised of voltage-sensitive channels. The kinetic properties of the junctional conductance are here studied under voltage clamp. When the transjunctional voltage is stepped to a new voltage of the same polarity, the junctional conductance changes as a single exponential to a steady-state level. The time constant of the conductance change is determined by the existing transjunctional voltage and is independent of the previous voltage. For each voltage polarity, the relations between voltage, time constant, and steady-state conductance are well modeled by a reversible two-state reaction scheme in which the calculated rate constants for the transitions between the states are exponential functions of voltage. The calculated rate constant for the transition to the low-conductance state is approximately twice as voltage dependent as that for the transition to the high-conductance state. When the transjunctional voltage polarity is reversed, the junctional conductance undergoes a transient recovery. The polarity reversal data are well modeled by a reaction scheme in which the junctional channel has two gates, each with opposite voltage sensitivity, and in which an open gate may close only if the gate in series with it is open. A simple explanation for this contingent gating is a mechanism in which each gate senses only the local voltage drop within the channel. The Rockefeller University Press 1981-01-01 /pmc/articles/PMC2215411/ /pubmed/6259275 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Kinetic properties of a voltage-dependent junctional conductance |
title | Kinetic properties of a voltage-dependent junctional conductance |
title_full | Kinetic properties of a voltage-dependent junctional conductance |
title_fullStr | Kinetic properties of a voltage-dependent junctional conductance |
title_full_unstemmed | Kinetic properties of a voltage-dependent junctional conductance |
title_short | Kinetic properties of a voltage-dependent junctional conductance |
title_sort | kinetic properties of a voltage-dependent junctional conductance |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215411/ https://www.ncbi.nlm.nih.gov/pubmed/6259275 |