Cargando…
Selective enhancement and suppression of frog gustatory responses to amino acids
Properties of the receptor sites for L-amino acids in taste cells of the bullfrog (Rana catesbeiana) were examined by measuring the neural activities of the glossopharyngeal nerve under various conditions. (a) The frogs responded to 12 amino acids, but the responses to the amino acids varied with in...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1981
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215422/ https://www.ncbi.nlm.nih.gov/pubmed/6972437 |
Sumario: | Properties of the receptor sites for L-amino acids in taste cells of the bullfrog (Rana catesbeiana) were examined by measuring the neural activities of the glossopharyngeal nerve under various conditions. (a) The frogs responded to 12 amino acids, but the responses to the amino acids varied with individual frogs under natural conditions. The frog tongues, however, exhibited similar responses after an alkaline treatment that removes Ca2+ from the tissue. The variation in the responses under natural conditions was apparently due to the variation in the amount of Ca2+ bound to the receptor membrane. (b) The responses to hydrophilic L-amino acids (glycine, L-alanine, L-serine, L- threonine, L-cysteine, and L-proline) were of a tonic type, but those to hydrophobic L-amino acids (L-valine, L-leucine, L-isoleucine, L- methionine, L-phenylalanine, and L-tyrptophan) were usually composed of both phasic and tonic components. (c) The properties of the tonic component were quite different from those of the phasic component: the tonic component was largely enhanced by the alkaline treatment and suppressed by the acidic treatment that increases binding of Ca2+ to the tissue. Also, the tonic component was suppressed by the presence of low concentrations of salts, or the action of pronase E, whereas the phasic component was unchanged under these conditions. These properties of the phasic component were quite similar to those of the response to hydrophobic substances such as quinine. These results suggest that the hydrophilic L-amino acids stimulate receptor protein(s) and that the hydrophobic L-amino acids stimulate both the receptor protein and a receptor site similar to that for quinine. (d) On the basis of the suppression of the responses to amino acids by salts, the mechanism of generation of the receptor potential is discussed. |
---|