Cargando…

Arsenazo III and antipyrylazo III calcium transients in single skeletal muscle fibers

The metallochrome calcium indicators arsenazo III and antipyrylazo III have been introduced individually into cut single frog skeletal muscle fibers from which calcium transients have been elicited either by action potential stimulation or by voltage-clamp pulses of up to 50 ms in duration. Calcium...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215480/
https://www.ncbi.nlm.nih.gov/pubmed/6802933
Descripción
Sumario:The metallochrome calcium indicators arsenazo III and antipyrylazo III have been introduced individually into cut single frog skeletal muscle fibers from which calcium transients have been elicited either by action potential stimulation or by voltage-clamp pulses of up to 50 ms in duration. Calcium transients recorded with both dyes at selected wavelengths have similar characteristics when elicited by action potentials. Longer voltage-clamp pulse stimulation reveals differences in the late phases of the optical signals obtained with the two dyes. The effects of different tension blocking methods on Ca transients were compared experimentally. Internal application of EGTA at concentrations up to 3 mM was demonstrated to be efficient in blocking movement artifacts without affecting Ca transients. Higher EGTA concentrations affect the Ca signals' characteristics. Differential effects of internally applied EGTA on tension development as opposed to calcium transients suggest that diffusion with binding from Ca++ release sites to filament overlap sites may be significant. The spectral characteristics of the absorbance transients recorded with arsenazo III suggest that in situ recorded signals cannot be easily interpreted in terms of Ca concentration changes. A more exhaustic knowledge of the dye chemistry and/or in situ complications in the use of the dye will be necessary.